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CHAPTER 1

Introduction and Basic Theory

In this introductory chapter, we provide some preliminary background which we will use
later in establishing various results for general elliptic partial differential equations (PDEs).
The material found within these notes aims to compile the fundamental theory for second-
order elliptic PDEs and serves as complementary notes to many well-known references on
the subject, c.f., [3], [6, [§, 11, 13]. Several recommended resources on basic background that
supplement these notes and the aforementioned references are the textbooks [2, O 21].

We will mainly focus on the Dirichlet problem,

Lu=f inU,
{ u=0 on U, (1.1)

where U is a bounded open subset of R” with boundary OU, and u : R" — R is the unknown
quantity. For this problem, f : U +— R is given, and L is a second-order differential operator
having either the form

ZD x)Dyu) +Zb’ )Diu + c(x)u, (1.2)

i,j=1
or else
Za D,]u—l—Zbl )Diu + c(z)u, (1.3)
i,j=1
for given coefficient functions a*”, b*, and ¢ (i,7 = 1,2,...,n) which are assumed to be

measurable in U, the closure of the set U. However, in this chapter, we take these coefficients
to be continuous in U. If L takes the form (|1.2)), then it is said to be in divergence form,
and if it takes the form ([1.3)), then it is said to be in non-divergence form.
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Remark 1.1. Here, D;; = D;D;. In practice, 1s natural for energy methods while
s more appropriate for the mazimum principles. In addition, the Dirichlet problem
can be extended to systems, i.e., Lu; = f; in U, and u; =0 on OU, fori=1,2,...,L € Z*.
A simple example of a second-order differential operator is the Laplacian, L == —A, where

a =0, 0" =c=0 (4,7 =1,2...,n) in either (1.2) or (L.3).

Remark 1.2. The elliptic theory for equations in divergence form was developed first as
we can easily exploit the distributional framework and energy methods for weak solutions in
Sobolev spaces, for example. Much of our focus in these notes will be on establishing the
basic elliptic PDE theory for equations in divergence form.

Remark 1.3. Extending this theory to elliptic equations in non-divergence form has certain
obstacles, and its treatment requires a somewhat different approach. We shall study one
way of examining such equations using another concept of a weak solution called a viscosity
solution, which are defined with the help of maximum and comparison principles. We shall
give a brief introduction to fully nonlinear elliptic equations in non-divergence form and their
viscosity solutions in Chapter [/

Unless stated otherwise, we shall always assume that L is uniformly elliptic, i.e., there
exist A, A > 0 such that

MEP <> a9 (2)6¢ < Al¢f aex €U, forall { € R™.
ij=1
Moreover, u € H}(U) is said to be a weak solution of (1.1)) in divergence form if
Blu, v] = (f, v), for allv € Hy(U),

where B[, -] is the associated bilinear form,

Blu, v] := / Z a”’ DyuDjv + Z b (2) Dywv + c(z)uv d.
U

ij=1 i=1

1.1 Harmonic Functions

First we shall introduce the mean-value property, which provides the key ingredient in es-
tablishing many important properties for harmonic functions.

1.1.1 Mean Value Properties
Definition 1.1. For u € C(U) we define



(i) u satisfies the first mean value property (in U ) if

1

") = BB, o

u(y)do, for any B,(z) C U;

(i1) u satisfies the second mean value property if

o1/, y)dy for any B.(x) C U.

Remark 1.4. These two definitions are equivalent. To see this, observe that if we rewrite
(i) as

way = — | u(y)do,
9B, (z)

where w,, denotes the surface area of the (n — 1)-dimensional unit sphere 8™, then integrate
with respect to r, we get

1
/ / y)do,ds = — u(y) dy.
aBs(x Wn J B, (z)

If we rewrite (ii) as

u(z)r" = aa / / y) doyds
Wn Br(x) OB;(z

then differentiate with respect to r, we obtain (i).
Remark 1.5. The mean value properties can easily be expressed in the following ways.

(1) uwe C(U) satisfies the first mean value property if

1
u(z) = —/ u(z +rw)do, for any B.(z) C U,
0B1(0)
(i1) uw e C(U) satisfies the second mean value property if
n

u(z) = —/ w(x +ry)dy for any B.(z) C U;
B1(0)

Theorem 1.1. If u € C?(U) is harmonic, then u satisfies the mean value property.

Proof. Set

1 1
u(y) do, = — u(z + rw) doy,.

r
Pr) = |8B( )l 8B, (z) Wn JoB;(0)



Then

o' (r) = 1 0 Du(z + rw) -wdo, = \831( T s Du(y) - Y ; ’ do,
- wnrln—1 /83T(z) %(y) doy = %w:r" /8&(:1:) %(y) dor
TR oy M0 =0
Hence, ¢ is constant. Therefore, by the Lebesgue differentiation theorem (see Theorem [3.4)),
¢(r) = lim o(t) = lim |aBi( ) Josuw u(y) doy = u(z).

]

The next theorem is the converse of the previous result. Namely, functions satisfying the
mean value property are harmonic.

Theorem 1.2. If u € C?(U) satisfies the mean value property, then u is harmonic.

Proof. 1f Au # 0, we may assume without loss of generality that there exists a ball B,.(z) C U
for which Au > 0 within B,(x) However, as in the previous computation,

oy 1
0= i) = Es / By >0

which is a contradiction. ]

The next theorem is the maximum principle for harmonic functions.

Theorem 1.3 (Strong maximum principle for harmonic functions). Suppose u € C*(U) N
C(U) is harmonic within U.
(i) Then
max u = max u.
U ou
(i1) In addition, if U is connected and there exists a point xy € U such that

u(zg) = max u(z),

then u s constant in U.

Proof. Suppose that there is such a point xg € U with u(zg) = M := maxgu. Then for
0 < r < dist(xg,0U), the mean value property asserts

1
M = = — dy < M.
U(ﬂ?o) ‘Br<l‘0)| /BT(zO) U’(y) Y=

Hence, equality holds only if w = M in B,(x). That is, the set {z € U |u(x) = M} is both
open and relatively closed in U. Therefore, this set must equal U since U is connected. This
proves assertion (ii), from which (i) follows. O



1.1.2 Sub-harmonic and Super-harmonic Functions

Interestingly, mean-value properties and maximum principles hold for sub-harmonic and
super-harmonic functions. Let us state such results including some important applications.
We say a function u € C?(U) is sub-harmonic in U if —Awu < 0 in U and super-harmonic if
—Au>0inU.

Lemma 1.1 (Mean Value Inequality). Let x € B, ,(z) C U for some rq > 0.
(1) If —Au > 0 within B,,(z), then for any r € (0,79),

1
)= BB s

It follows that if x¢ is a minimum point of u in U, then

u(y) doy.

—Au(zy) < 0.
(i1) If —Au < 0 within B,,(z), then for any r € (0,719),
1
u(z) <
[0B, ()] Jos, )

It follows that if x¢ is a mazimum point of u in U, then

u(y) doy,.

—Au(xg) > 0.
Proof. As in the proof of Theorem [1.1], we see
n—1 au
Au(z)dr =1 —(z + rw) do,,. (1.4)
() o8, (0) OF

We only prove (i) since the proof of (ii) follows from similar arguments. From (1.4)), we see
that if —Awu > 0, then
0

u(z + rw) do, < 0.
87’ 9B (0)

Integrating this from 0 to r yields
/ u(z + rw) do, — u(x)|0B1(0)] < 0,
0B1(0)

in which the desired inequality follows immediately. To prove the second statement in (i),
we proceed by contradiction. On the contrary, suppose that xy is a minimum point of u in
U and assume that —Au(zg) > 0. By the continuity of u, we can find a 6 > 0 for which
—Awu > 0 within Bs(xg). But the mean value inequality implies that

1
u(zg) > ——— u(y) do, for any r € (0,0).
|0B, (o) 9By (z0) Y
This contradicts with the assumption that zy is a minimum of . O
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A nice application of the mean value inequalities is the weak maximum principle for
the Laplacian. Analogous results for more general uniformly elliptic equations are provided
below. In addition, unlike the strong maximum principles for harmonic functions provided
earlier, we do not make any connectedness assumption on the domain U.

Theorem 1.4 (Weak Maximum Principle for the Laplacian). Suppose that u € C*(U) N
(0.
(1) If
—Au >0 within U,
then

min u > min u.
U oU

(i) If
—Au <0 within U,
then
max u < maxu.

U oU

Proof. We only prove (i) since (ii) follows from similar arguments. First, we assume wu is
strictly super-harmonic: —Awu > 0 within U. Let xy be a minimum of » in U, but the mean
value inequality implies —Au(xy) < 0, which is a contradiction. Thus, ming v > mingy u.
Now, suppose u is super-harmonic: —Aw > 0 within U and set u, = u — €|x|?. Obviously, u,
is strictly super-harmonic, i.e.,

—Au, = —Au + 2en > 0.

It follows that ming ue > mingy u. and the desired result follows after sending e — 0. [

An application of the weak maximum principle is the following interior gradient estimate
for harmonic functions.

Corollary 1.1 (Bernstein). Suppose u is harmonic in U and let V- CC U. Then there holds

sup [Dul < C'sup [ul,
1% oU

where C'= C(n, V) is a positive constant. In particular, for any o € (0,1) there holds

lu(z) —u(y)| < Clz —y|*sup|u| for any z,y € V.
oUu



Proof. A direct calculation shows
A(IDuf’) =2 (Dyu)* +2)  DauDi(Au) =2 (Dyu)* > 0. (1.5)
4,j=1 i=1 i,j=1

That is, |Dul? is a sub-harmonic function in U. Then, for any test function ¢ € CL(U), a
basic identity yields

A(plDul?) = (Ap)|Dul* + 2D - D(|Dul*) + ¢A(| Dul?).

Hence, combining this with (|1.5)) gives us

A(plDul?) = (Ap)|Duf2 +4 3" DigDjuDyu +2¢ 3" (Dyyu)?.

i,j=1 i,j=1

We establish the gradient estimates using a cutoff function. By taking ¢ = n? for some
n € CY(U) with n = 1 within V', we obtain by Holder’s inequality,

A(n?|Dul?) = 2nAn|Du|? + 2| Dn|?| Dul? + 8n Z DimDjuD;ju + 2n° Z(Diju)Q
ij=1 ij=1

C
> (2nAn = 6|Dnl*)[ Duf* > =C|Dul* = = A(w?),

where C' is a positive constant depending only on 7. In the last line, we used the fact that
A(u?) = 2|Dul? + 2uAu = 2|Du|? since u is harmonic. By choosing a > C/2 large enough,
we obtain

A(n?|Dul* + au®) > 0.

By part (ii) of the weak maximum principle, we obtain
sup |Du|* < sup {772|Du|2 + a|u|2} < sup {772|Du|2 + a|u|2} = asup |ul?
v v % oU

]

Theorem 1.5 (Removable Discontinuity). Let u be a harmonic function in Br(0)\{0} that
satisfies u(x) = o(|z)*™") as |z|] — 0 if n > 3 or u(z) = o(log|z|) as |z| — 0 if n = 2.
Then w can be defined at 0 so that it is smooth and harmonic in Br(0).

Proof. For simplicity, let us only consider the case n > 3, since the case when n = 2 is
treated exactly the same except that the fundamental solution is of the logarithmic type.
Assume u is continuous in the punctured disk Br(0)\{0} and let v solve

Av =0 in Bg(0),
v=u on 0Bg(0).

10



Moreover, assume that limj, o u(z)z[""? = 0, i.e., any possible singularity of u at the
origin grows no faster than the fundamental solution |z|*>™™ (of course, this property is
trivial whenever u is bounded).
It suffices to prove that u = v in Bg(0)\{0}. Set w = v —u in Br(0)\{0}, 0 < r < R,
and M, := maxyp, (o) |w|. Clearly,
n—2

()| < M,—

|:L.|n72

on 0B,(0).

Note that both w and \rlﬁ are harmonic in Bg(0)\B,(0). Hence, the weak maximum
principle implies

n—2
lw(z)| < Mrm—Z for any x € Br(0)\B,(0).
z|""
Then for each fixed x # 0,
n—2
o) < s ol oy OO e g g
dBR(0) |x|n—2 |x’n—2

TV
|z|2="0(1) as r —0

where we used the estimate

M, = max |v —u| < max |v| + max |u| < max |v| + max |u| < max |u| + max |u].
B, (0) B, (0) 9B, (0) dBg 25,(0) 9BR(0 8B,(0)

Hence, w = 0 in Bg(0)\{0}. O

1.1.3 Further Properties of Harmonic Functions

Theorem 1.6 (Regularity). If u € C(U) satisfies the mean value property in U, then u €
C>=(U).
Proof. Define n € C2°(R™) to be the standard mollifier

1 .
Cexp <|]§“2——1>’ if |$‘ < 1,
0, if |z| > 1,

n(x) =
where C' > 0 is chosen so that [[n||pi sy = 1, and set ue == 1. xu in U. = {z €

U |dist(x,0U) > €}. Then u, € C*(U). Now, the mean-value property and simple calcula-
tions imply

wie) = [ o=ty =2 [0 (E2)utyay

:ei" 0677(5) (/a&@) u(y )day> dr = —/ wn " u(z) dr
~ula) [ =)

Thus, u = u in U, and so u € C*(U,) for each € > 0. O

11



Remark 1.6. We mention some other reqularizing properties of the mollifier introduced
above. If u € C(U), then ue — u uniformly on compact subsets of U as ¢ — 0. Moreover,
if 1 < p < oo and the function u € L} (U), then uc — w in L} (U).

loc loc

Theorem 1.7 (Pointwise Estimates for Derivatives). Suppose u is harmonic in U. Then

o Ci
|D%u(z)| < THMIIUHLI(BT(x)), (1.6)

for each ball B,(x) C U and each multi-index o of order |a| = k. Particularly,

2n+1 ko k+1
Co= " o = TR

Wn Wn,

(k=1,2,...). (1.7)

Proof. We proceed by induction in which the case when k = 0 is clear. For k = 1, we note
that derivatives of harmonic functions are also harmonic. Consequently,

_ n2" 2n
|Byja(2)] B, 5(x) W™ JoB, y(x) v r (0B, /2())
(1.8)

If y € 0B, 2(x), then B, 2(y) C B,(x) C U, and so

n (2\"
< 2 (2) oo
where we used the estimate for the previous case k = 0. Inserting this into estimate (1.8
completes the verification for the case k = 1. Now assume that £ > 2 and the estimates
— hold for all balls in U and for each multi-index of order less than or equal to
k — 1. Fix B.(r) C U and let a be a multi-index with |a| = k. Then D*u = (D"u),, for
some i € {1,2,...,n}, |8 = k — 1. Using similar calculations as before, we obtain

o nk
[D%u()| < —= (1D ull e @8, 4 a)-
If y € B,i(z), then B%T(y) C B,(z) C U. Thus, estimates ([1.6)—(1.7) imply

n(2" tn(k — 1))t
|Dﬁu<y)’ S w (%r)nﬂ-k—l

n

ull21(B, (2))-

Combining the last two estimates imply the desired estimate

n(2”+1nk)k

Wy rtk

Ch

< el @ = o llell s @)-

[D%u(z)| <

12



Theorem 1.8 (Liouville). Suppose u : R® — R is harmonic and bounded. Then u is
constant.

Proof. Fix x € R, r > 0, and apply Theorem on B,.(z) to get

| Du(z)| < ] lull1B, @) < Sog — |ul| Lo (B, (z)) < — 0 as r — oo.

Hence, Du = 0, and so u is constant. ]

Theorem 1.9 (Harnack’s Inequality). For each connected open set V- CC U, there exists a
positive constant C' = C(V'), depending only on V', such that

supu < Cinfu
v 1%

for all non-negative harmonic functions w in U. In particular,
Clu(y) < u(r) < Culy)
forallz,y € V.

Remark 1.7. Harnack’s inequality asserts that non-negative harmonic functions within V'
are in a sense all comparable and shows that the oscillation of such functions can be con-
trolled. Basically, a harmonic function cannot be small (large, respectively) at some point in
V' unless it is small (large,respectively) on all other points in V.

Proof. Let r := 1dist(V,0U) and choose z,y € V with |z — y| < r. Then

1 n
u(x u(z)dz > / u(z) dz
(=) = B o )2 o [
1 1
2)dz = —ul(y
- 5 Ew ), 2

Hence, sru(y) < u(z) < 2"u(y) if 2,y € V with |z — y| < r. Since V is connected and its

closure is compact, we can cover V by a chain of finitely many balls {B;}¥,, each of which
has radius r/2 and B; N B;_1 # 0 for i = 2,3,... N. Then

1

for all z,y € V. O

The following provides an another equivalent characterization of harmonic functions, and
it gives a proper motivation for the notion of viscosity solutions to fully nonlinear elliptic
equations (see Chapter [4)).

13



Theorem 1.10. Let U be a open bounded domain in R™. Then, u is a harmonic function
i U if and only if u is continuous and satisfies the following two conditions.

(i) If u — ¢ has a local mazimum at xo € U and ¢ € C*(U), then —Ap(zq) < 0.
(ii) If u — ¢ has a local minimum at xy € U and p € C*(U), then —Ap(xq) > 0.

Proof. 1f uw is harmonic in U, then u is clearly continuous and showing it satisfies the two
conditions is obvious. For instance, if u — ¢ has a local maximum at xq € U, then

—Ap(x) = Au(zo) — ¢(20)) < 0.

The second condition is verified in a similar manner. Now suppose that the two conditions
are satisfied. By regularity properties of harmonic functions as indicated earlier, we may
assume that v is C2. Then, it is clear that if u € C?(U), then we can set ¢ = u in the two
conditions and conclude that u = ¢ is harmonic in U. O

1.1.4 Energy and Comparison Methods for Harmonic Functions

The following are simple approaches for harmonic functions that we will make use of in the
later chapters. We begin with Cacciopolli’s inequality, which is sometimes called the reversed
Poincaré inequality.

Lemma 1.2 (Cacciopolli’s Inequality). Suppose u € C'(By) satisfies
/ a’(z)DuDjpdr =0 and ¢ € Cy(By).
By
Then for any function n € C}(By), we have

/ n*|Dul*dx < C [ |Dn|*u®dx,
B

B
where C' = C(\, ) is a positive constant.

Proof. For any n € C}(By) set ¢ = n?u. From the definition of a weak solution, we have
)\/ n*|Dul*dx < A [ n|u||Dn||Dul dz.
Bl Bl

Then by Holder’s inequality,

)\/ n?| Dul? dx SA/ n|u||Dn||Du| dz
Bl Bl

2 P
<A (/ n*| Du? dm) (/ | Dn|*u? dm)
B1 Bl

and the result follows immediately. O

14



Corollary 1.2. Let u be as in Lemma[I.3. Then for any 0 <r < R < 1, there holds

C
Dul*dr < ——— 2d
[ ipudr < s [

Proof. Choose 1 such that n =1 on B,, n = 0 outside Bg and |Dn| < 2(R—r)~! then apply
Lemma [T.2 O

where C'= C(\, ).

Corollary 1.3. Let u be as in Lemma[I.3. Then for any 0 < R < 1, there hold

/ u? dr < 9/ u*dr, and / | Dul? dz < 9/ | Dul|? d,
BR/2 Bgr BR/Q Br

where § = 6(n, A\, A) € (0,1).

Proof. Take n € C}(Bg) with 7 = 1 on Bgjs and [Dn| < 2R™'. Then by Lemma and
since Dn = 0 in Bpg/s, we have

C
/ |D(nu)|? do < / | Dnl*u® + | Dul? dz < C/ |Dn*u® de < — u® dx.
Br Br Br R BR\BR/Q

From this estimate and Poincaré’s inequality, we obtain

/ u? dr < / (nu)? dz < C’nR2/ |D(nu)|? dx < C’/ u? dr.
Bry2 Br Br Br\Bpg/2

This further implies
(C+1)/ u*dr < C u? dr,
Bry2

Br

which completes the proof of the first estimate. The proof of the second estimate follows
similar arguments. O

Remark 1.8. Interestingly, Corollary[1.3 implies that every harmonic function in R™ with
finite L?-norm are identically zero and every harmonic function in R™ with finite Dirichlet
integral is constant. Moreover, iterating the estimates in Corollary[1.3 leads to the following
estimates. Let u be as in Lemmal[1.9, then for any 0 < p <r <1 there hold

/ u? dr < C<£>u/ u?dx, and / |Du|2d$<C / | Du|? de,
B, r B,

for some positive constant = p(n, X\, A). Later on we prove that we can take p € (n—2,n).
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Lemma 1.3 (Basic Estimates for Harmonic Functions). Suppose {a"} is a constant positive
definite matriz satisfying the uniformly elliptic condition,

MEPP < a(x)&€ < A€ for any € € R™ (1.9)
for some 0 < A < A. Suppose u € C*(By) satisfies
/ a”’(z)DiuDjp =0 for any ¢ € Cy(By).
B1

Then for any 0 < p <r, there hold

2z < Bn/ 2
/Bp|u| x_C(r) Br|u| X,

n+2
/ = (o, [*dz < € (£) / [u— (u)o,|* da,
B, r B,

Proof. By dilation, consider r = 1. We restrict our consideration to the range p € (0,1/2],
since the estimates are trivial for when p € (1/2,1].
Claim:

where C'= C(\,A).

[l + 1Dl < CON) [ Ju?do

B1
From this we get

[ WP <l < o [ Juf ds
B, By

and

[ = wPin< [ u- P de < Dl < o [ s
P

B, B
If u is a solution of (1.9)) then so is u—w;. With u replaced by u —u; in the above inequality,
there holds

/ lu—u,|?dr < cp"? [ |u—w)*da.
B, By

It remains to prove the claim. If u is a solution of ([1.9)), then so are any derivatives of u. By
applying Corollary to the derivatives of u, we conclude that for any positive integer k

||u||Hk(Bl/2) < C(k, AaA)HUHL?(Bl)-

By fixing k sufficiently large, the Sobolev embedding theorem implies that H*(B; /2) =
01(31/2). ThUS,

lullvs, ) = sup u(z)| + Sup [ Du()| < c(n)||ull e, ) < cln kA A)|ullzs,).
1/2 1/2

This completes the proof of the lemma. n
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1.2 Classical Maximum Principles

In this section, we consider an elliptic operator L in non-divergence form:

n
Lu = Z T) U, + sz ) Uy, + c(2)u,
1,j=1

where the coefficients a¥, b%, ¢ are continuous in some bounded open subset U C R” and the
uniform ellipticity condition holds. We now introduce the important maximum principles
for second-order uniformly elliptic equations. In the next chapter, we will instead focus on
uniformly elliptic operators in divergence form, which are more appropriate for the energy
and variational methods introduced in that chapter. In the later chapters, we will also look
at maximum principles for weak solutions when we study the weak Harnack inequality and
its connection with regularity properties of solutions to elliptic equations (see Theorem m
for example).

1.2.1 The Weak Maximum Principle

Theorem 1.11 (Weak Maximum Principle). Assume u € C?(U) NC(U) and c=0 in U.
(a) If Lu <0 in U, then maxu = maxu.

U ouU
(b) If Lu > 0 in U, then minu = min u.
U ou

Proof. We prove assertion (a).

Step 1: First we assume Lu < 0 in U but there exists zg € U such that u(zy) = maxg u. Of
course, at this maximum point there hold

(1) Du(xo) =0 and (ii) D*u(zg) < 0. (1.10)

Since A = (a¥(x)) is symmetric and positive definite, there is an orthogonal matrix O = (0;;)
such that
OAOT = diag(dy, ds, ..., d,), (1.11)

where OOT =T and d, > 0 for k =1,2,...,n. Write y = zo + O(z — 1) so that x — zg =
OT(@/_J:O)?

n n
Uy = g Uy, Opi and Uy, = E Uy, Oki0O0; (1,7 =1,2,...,m).
k=1 k=1

Hence, at the point x,

n n n
E , a Juij = E : E : a juykyeokioﬁ

3,j=1 k=1 k=1

k=1

17



where in the last line the inequality is due to (1.10])(ii) and the fact that dy > 0 for k =

1,2,...,n, and the equality is due to (1.11]). From (1.10))(i) and (1.12)), at the point zy we

have
n n
Lu=— g a7 Uz, + E b'u,, > 0,
ij=1 i=1

and we arrive at a contradiction.

Step 2: Now we complete the proof for the case when Lu > 0 in U. Set
u(z) := u(x) + e, x €U,

where A > 0 will be specified below and € > 0. From the uniform ellipticity condition, there
holds a(z) > 6 for i = 1,2,...,n, x € U. Hence,

Luf = Lu + eL(e™) < e (=A% + Ab') < ee? (= A20 + ||b]|z=)) < 0 in U,

provided that A > 0 is chosen to be sufficiently large. Namely, we have Lu® > 0 in U and we
conclude maxg u¢ = maxgy u¢ from step 1. Let € — 0 to find maxg u = maxyy u.

Assertion (b) follows easily from (a) once we make the simple observation that —u is a
subsolution, i.e., L(—u) < 0 in U whenever u is a supersolution. [

1.2.2 The Strong Maximum Principle

Just as we have for harmonic functions, the weak maximum principles may be strengthened
after some added conditions on U. In order to do this, we make use of Hopf’s Lemma.

Lemma 1.4 (Hopf’s Lemma). Assume u € C*(U)NC(U) and ¢ =0 in U. Suppose further
that Lu > 0 in U and there is a ball B contained in U with a point 2° € OU NOB such that

u(z) > u(2°) for all v € B. (1.13)

(a) Then for any outward directional derivative at x°,

ou, ,
(b) If ¢ >0 in U, the same conclusion holds provided u(z") < 0.

Remark 1.9. An analogous result holds for when Lu < 0 in U but with the inequalities
i the above “interior ball” condition and the conclusions are switched to be in the opposite
direction.

18



Proof of Hopf’s Lemma. Assume ¢ > 0 and also assume, without loss of generality, that
B = B,(0) for some r > 0.
Step 1: Define

v(z) = e M — e for z € B,(0)

for A > 0 to be specified below. Then, from the uniform ellipticity condition,

Lv= — z": aijuxixj + z”: bivxi + cv

ij=1 i=1

= ¢l Z al(—AN 215 4 2M8;;) — e Nl Z b2z + c(e Nl — e

by i=1
< e (40N + 2007 (A) + 2)[b]|] + ),

for A = (a”) and b = (b"). Next consider the open annulus R = BY(0)\B,2(0) and so
Lo < e M (—0X2r2 4 20tr(A) + 2A\|blr +¢) <0 in R (1.14)

provided that A > 0 is fixed to be large enough.
Step 2: In view of ([1.13)), there exists a constant € > 0 small for which

u(z’) > u(x) + ev(z) for = € 8B, /5(0). (1.15)
In addition, notice since v = 0 on 9B,(0),

u(z?) > u(x) + ev(z) for x € 9B,(0). (1.16)

Step 3: From , we see
L(u+ev —u(2°)) < —cu(z”) <0 in R,
and from and we have
u+ev—u(x”) <0 on OR.

The weak maximum principle implies that u+ev—u(z") < 0in R, but u(z?)+ev(z°)—u(z?) =
0, and so

ou, 4 ov,
— (2% >
ay(m )—l—eay(x ) >0
Consequently,
ou, 4 ov, | € o 0 a2
—_ > —— = —— . = r .
ay(x ) > eay(x ) 7aDv(ac )-x” = 2\ere >0
This completes the proof. O
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Theorem 1.12 (Strong Maximum Principle). Assume v € C2(U)NC(U), c=01in U C R",
and U is connected, open and bounded.

(a) If Lu < 0 in U and u attains its mazimum over U at an interior point, then u is constant
within U.

(b) If Lu > 0 in U and u attains its minimum over U at an interior point, then u is constant
within U.

Proof. We prove statement (a) only, since statement (b) follows similarly. Write M = maxg u
and take C' = {x € Ulu(x) = M}. If C is empty or if u = M we are done. Otherwise, if
uZ M, set

V={xeUlu(z) < M}.

Choose a point y € V satisfying dist(y, C') < dist(y,0U) and let B denote the largest ball
with center y whose interior lies in V. Then there exists some point 2° € C with 2° € 0B.
It is easy to check that V satisfies the interior ball condition at x°. Hence, by part (a) of
Hopf’s lemma, du/0v(x%) > 0. But this contradicts with the fact that Du(z°) = 0 since u
attains its maximum at 2° € U. O

If the coefficient ¢(x) is non-negative, then we have the following version of the strong
maximum principle. Its proof is the same as before but invokes statement (b) in Hopf’s
lemma.

Theorem 1.13 (Strong Maximum Principle for ¢ > 0). Assume u € C*(U)NC(U), ¢ >0
m U CR", and U is connected, open and bounded.

(a) If Lu <0 in U and u attains a non-negative maximum over U at an interior point, then
w 1s constant within U.

(b) If Lu > 0 in U and u attains a non-positive minimum over U at an interior point, then
u is constant within U.

Finally, we state a quantitative version of the maximum principle for second-order elliptic
equations called Harnack’s inequality. However, a more general version with proof shall be
offered in Chapter [3] There we will see the importance of Harnack’s inequality and how it
applies to obtaining several results on a weaker notion of solution, called weak or distribu-
tional solutions, for elliptic equations. This includes results on their regularity properties,
Liouville type theorems, and even a version of the strong maximum principle adapted to
weak solutions.

Theorem 1.14. Assume u is a non-negative C? solution of

Lu=0 in U,
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and suppose V. CC U 1s connected. Then there exists a constant C such that

supu < C'inf u.
v 1%

The constant C' depends only on V' and the coefficients of L.

1.3 Newtonian and Riesz Potentials

1.3.1 The Newtonian Potential and Green’s Formula

Definition 1.2. The function

1
2—10g|$|, Zf’I’L:27
D(z):=4q 7 1 1

wy(n —2) |x|n=2’

ifn > 3.

defined for all x € R™\{0}, is the fundamental solution of Laplace’s equation. In addition,
if f e LP(U) for 1 <p < oo, then the Newtonian potential of f is defined by

we)i= | T y)f)dy

The following theorem is a basic result which states that the kernel I" in the Newtonian
potential is the fundamental solution of Poisson’s equation. We refer the reader to the
references introduced earlier for a proof of this elementary result.

Theorem 1.15. Let f € C*(R™) and define u to be the Newtonian potential of f. Then
(i) u e C*R"),
(it) —Au = f in R™.

Proof. Step 1: Clearly,

u(r) = / Dz —y)fly)dy = / (y) f(x —y) dy,

therefore,

u(x+he}j) —u(r) /n F(y)<f(x+h€¢ —Z) —f(:c—y)> dy,

where h # 0 and e; = (0,...,1,0,...0) where the 1 is in the i'" slot. Of course,

flx+he;—y) — flx—vy)
h

— fz,(x —y) uniformly on R" as h — 0,
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and thus for 2 =1,2,....n,

we) = [ Ttz =)y

Likewise, for i = 1,2,...,n,

i, (0) = [P0 oo~ )y

and this shows u is C? since the right-hand side of the last identity is continuous.
Step 2: Fix € > 0 and suppose n > 3. Due to the singularity of fundamental solution
at the origin, we must be careful in our calculation. Namely, we first consider the splitting

Au(z) = / TSy dy / P)Af(e—y)dy =+ 2. (117)

R™\ B¢ (0)

Then, polar coordinates implies

1< NP ey [ [Pl dy < 0072 < €2 (118)

=(0)

Integration by parts implies

2= [ rwaSa - dy
R™\B<(0)
of
= DI(y) - Dyf(x —y)d rn? e vas
/R ) (y) - Dyf(x—y)dy + /a o (v) 5, (&~ ) dS(y)
R (1.19)

where v denotes the inward pointing unit normal along 9B.(0). Now,

21 < 1D limey | IT)|aS() < Ce (1.20)

B:(0)

Again, integration by parts and since I' is harmonic away from the origin, we get

or
Jl = AT x —y)dy — — x—1y)dS
= ATse = [ - pas
:_i/ g%wﬂx—wdﬂw- (1.21)
dB:(0) OV

Now, it is clear that DI'(y) = —iﬁ (y #0) and v = —y/|y| = —y/e on 0B.(0). Thus,

O ) =v-DI(y) =

gl 0B.(0).
WpE™™
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1 1
szt o fE =080 =~ [ e nas) — i) 2

as ¢ — 0. Hence, combining the estimates (1.18))-(1.22)) and sending ¢ — 0 in (1.17)), we
obtain —Au(z) = f(z) and this completes the proof. ]

Remark 1.10. The proof above remains valid in the case where n = 2 except that the
estimates for I' and J? become

IIl| < Ce?|loge| and |J?| < Ce|loge.

1.3.2 Riesz Potentials and the Hardy-Littlewood-Sobolev Inequal-
itiy

From the previous theorem, we see that the Newtonian potential provides an explicit formula

for solutions of Poisson’s equation. On the other hand, the integral equation provides a simple

example of a singular integral operator, which can be naturally extended to more general

singular integral operators such as the Riesz potential. Remarkably yet not surprisingly, the

Riesz potentials are very closely related to problems involving fractional Laplacians such

as the Lane-Emden and Hardy-Littlewood-Sobolev systems. We give a definition of Riesz
potentials here and briefly discuss their boundedness in LP spaces.

Definition 1.3. Let a be a complex number with positive real part Re o > 0. The Riesz
potential of order «v is the operator

I, = (—A)™2
In particular,
fly
A e =X

where Cp o = 27 F_%F;ﬁ) and the integral is convergent if f € S, i.e., f belongs in the

3
2

Schwartz class.

The following result is the well-known Hardy-Littlewood-Sobolev inequality, which shows
the boundedness of the Riesz potentials. The proof of these theorems can be found in [5] [16].

Theorem 1.16 (Hardy-Littlewood-Sobolev inequality). Let 0 < a < n and p,q > 1 such

that
1 1l n—«o

p q n

=2.

ther F(@)g(y)
xX)g\y
/ / [y drdy < Crpallflle@n) |9l Le@n) (1.23)

|z —
for any f € LP(R™) and g € LY(R"™) where C,, .o S a positive constant.
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Remark 1.11. The sharp constant in the HLS inequalily satisfies

Corp < (n —nA)pq (IS’;W)W ((1 i/Ib/py/n ! (1 i/Ib/q)w> |

where A =n — .

The following is an equivalent formulation of the Hardy-Littlewood-Sobolev inequality. It
determines the conditions on the exponents p and ¢ that guarantee [, : LP(R") — L(R")
is a bounded linear operator. For completeness, we shall give a proof of this version of the
Hardy-Littlewood-Sobolev inequality in Section [3.1.5]

Theorem 1.17. Let o € (0,n), 1 <p<q< oo, f € LP(R") and

L, 1 1 o | np
<q with ———=—,1.e., p= :
n—« P q n n—+ap

Then
Ha(F)lza@n)y < Crpall fllze@n).

One interesting motivation for considering Riesz potentials is due to their close relation-
ship with poly-harmonic equations. For instance, consider the system

o a/2 — 01,.,9 . n
{( A)Y 2y = || 0!, w >0, inR" (1.24)

(—A)*?y = |z|"2uP, v >0, inR™

When a € (0,n) is an even integer and oy, 09 € (—a, 00), (1.24]) is equivalent to the integral
system of Riesz potentials

o1 q
u(z) :/ Mdy, u>0 in R"

|nfa

02 p
v(x) :/ Mdy, v>0 in R",
R

n o —ylnme

(1.25)

in the sense that a classical solution of one system, multiplied by a suitable constant if
necessary, is also a solution of the other when p,q > 1, and vice versa. Interestingly, when
o; = 0, the integral equations in are the Euler-Lagrange equations of a functional
under a constraint in the context of the HLS inequality. In particular, the extremal functions
for obtaining the sharp constant in the HLS inequality are solutions of the system of integral
equations. For more on the analysis of systems and , we refer the reader to the
papers [14, [15] 23], 24, 25, 26] and the references therein.
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1.3.3 Green’s Function and Representation Formulas of Solutions

Let U C R™ be an open and bounded subset with C* boundary OU. Our goal here is to find
a representation of the solution of Poisson’s equation

—Au=fin U
subject to the prescribed boundary condition
u=g on OU.

We derive the formula for the Green’s function to this problem. Fix x € U and choose ¢ > 0
suitably small so that B.(x) C U. Then, apply Green’s formula on the region V, = U\ B(z)
to u(y) and I'(y — x) to get

/U(y)AF(y—x)—F(y—x)Au(y)dy:/

€ Ve

()5 (g =) Ty —2) () dS(y). (1.26)

Notice that AT'(x — y) = 0 for = # y and that

‘/@B(xFy—x —(y)dS(y )) Ce”lmaX]F|_o(1)

8B.(0)

Then, similar to the proof of Theorem [1.15] we can show that

ABG(I)u(y)g(y—x) dS(y) = OB oo u(y) dS(y) — u(x)

as ¢ — 0. Hence, sending ¢ — 0 in ([1.26)) yields

we) = [ {Tw-2)500 w5 -2} dS0) - [ T -adudy. (20

Indeed, identity holds for any point z € U and any function v € C?(U). This
representation of u is almost complete since we know u satisfies Poisson’s equation and
its values on the boundary are given, i.e., we know the values of Au in U and v = ¢ on
OU. However, we do not know a priori the value of du/dv on OU. To circumvent this,
we introduce, for fixed x € U, a corrector function ¢* = ¢*(y), solving the boundary-value
problem

{ A¢p* =0 in U, (1.28)

¢*=T(y—=x) onU.

As before, if we apply Green’s formula once more, we obtain

- [wsuw = [ u) G - W5 s
U ou Pyt 9
= [ ul) % 0) = Tl = )5 () (o). (1.20)
oUu

Now introduce the Green’s function for the region U.
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Definition 1.4. The Green’s function for the region U is
G(z,y) =Ty —z) — ¢"(y) for v,y € U, x #y.

In view of this definition, adding (1.29) to (1.27) yields

ue) == [ an G @ dsw) - [ Gamdumay wev). (130
where 9G
5, (@&y) = DyGlz,y) - v(y)

is the outer normal derivative of G with respect to the variable y. Here, observe that the
term Ou/Jv no longer appears in identity ([1.30]).
In summary, suppose that u € C?(U) is a solution of the boundary-value problem

—Au=f inU,
{ u=g on U, (1.31)

for given continuous functions f and g. Then, we have basically shown the following.

Theorem 1.18 (Representation formula via Green’s function). If u € C*(U) solves problem

, then
wa) =~ [ s @nase)+ [ Genfwdy @ev). 0

U

If the geometry of U is simple enough, then we can actually compute the corrector
function explicitly to obtain G. Two such examples are when U is the unit ball or the
hyperbolic or half-space in R".

1.3.4 Green’s Function for a Half-Space
Consider the half-space
R? = {z = (z1,22,...,2,) € R"|2,, > 0},

whose boundary is given by R = R"'. Although the half-space is unbounded and the
calculations in the previous section assumed U was bounded, we can still use the same ideas
to find the Green’s function for the half-space. In order to do so, we adopt a reflection
argument. Namely, if = (z1,22,...,2,) € R}, we let & = (1,22, ..., —2,), the reflection
of  in the plane OR’}. Then set

?"(y) =Ty —2) =T — 21, .., Yn-1 — Tn-1,Yn + ) for z,y € R7.
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The idea is that this corrector ¢* is built from I' by reflecting the singularity from x € R"
to # € R’. Observe that

¢"(y) =T'(y —x) if y € ORY,

and thus A
" =0 in R",
{ ¢*=T(y—x) onJdRY, (1.33)
as required. That is, we have the following definition.
Definition 1.5. The Green’s function for the half-space R” is
G(z,y) =T(y—=z) Ty —2) for z,y eRY, z#y.
Then ] n
~ - Yn — Tn Yn T,
G, (v,y) =1, (y—= —Fny—x:—[ — —|.
(09) = Ty (3 =) =Ty, (y =) = — [t It
Consequently, if y € OR?,
oG 2z, 1
— = -G =
v (:Ij',y) yn($7y> W, |x—y|”
Now if u solves the boundary-value problem
Au=0 inR7%,
{ u=g ondRY, (1.34)
then the representation formula ((1.32)) of the previous theorem suggests that
22y, 9(y)
u(z) = —/ dy (x € RY) (1.35)
wn Jorn [T —y[" i

is the representation formula for the solution. Here, the function

2x,, 1

for z € R,y € ORY}

is called Poisson’s kernel for U = R’} and (1.35) is called Poisson’s formula. Now, let us
prove that Poisson’s formula indeed gives the formula for the solution of the boundary-value

problem ((1.34)).

Theorem 1.19 (Poisson’s formula for R?). Assume g € C(R") N L>®(R"1), and define
u by Poisson’s formula (1.35)). Then

(a) ue C*(RY) N L>®RY),
(b) Au=0 in R7,

(c) lim  wu(x)=g(z°) for each point 2" € OR".

r—a0,z€RT
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1.3.5 Green’s Function for a Ball

If U = B1(0), we construct the Green’s function through another reflection argument, but
here we exploit an inversion through the unit sphere 0B;(0).

Definition 1.6. If x € R™"\{0}, the point

xZ

CT P

is called the point dual to x with respect to dB1(0). The mapping x — T is inversion through
the unit sphere 0By (0).

Obviously, the inversion maps points on the sphere to itself, maps the points in the ball
to its exterior R™\ By(0), and maps points in the exterior into the ball. Now fix x € B;(0)
and we want to find the corrector function ¢* = ¢*(y) solving

{ Ag® =0 in B;(0),

" =T(y—x) on 9dB;(0), (1.36)

with the Green’s function

G(z,y) =Ty —z) — ¢"(y).
Notice that the mapping y + I'(y — ) is harmonic for y # . Thus y — |z|>*"T'(y — 7) is
harmonic for y # &. Hence,

¢ (y) == T(|zl(y — 7)) (1.37)
is harmonic in U = B;(0). Furthermore, if y € 9B,(0) and z # 0,
- YT 1
22y — 72 = [2f(Jyl* - 2t W) =laf =2y w+1=z -yl

That is, |z — y[*™" = (Jz||ly — |)* " and so
¢"(y) =Ty — =) (y € 9B:(0)),
as required.

Definition 1.7. The Green’s function for the unit ball By(0) is
G(z,y) =Ty —2) = T(lz[(y = 7)) (z,y € Bi(0)). (1.38)

Note that the same formula holds when n = 2, where the kernel I is of the logarithmic
type. Now assume u solves the boundary-value problem

{ Au=0 in B(0), (1.39)

u=g¢g on dB(0).

28



Then the representation formula (|1.32)) indicates that
oG
uw) == [ o) e dS(y). (140
9B1(0) v

Then, according to (|1.38)),

Gyi(l’,y) = Fyi(y - l’) - F(|£L’|(y - j))w

We calculate that

1z —wy
and
~ 1 yilz]? — 2 1 yilx]? —
T — = A e 1 bl B
(ol =D == ally =20 = "on lo ol
if y € 0B1(0). Then,
= 11—z
= zG 5 - z Y 7 2 i) — - .

Inserting this into ((1.40) yields the representation formula

Wn 0) |z —y|"

Actually, we can use a dilation argument to get the Green’s function for U = Bg(0). Namely,
suppose now that u solves the boundary-value problem

(1.41)

Au=0 in Bg(0),
u=g on 0Bg(0).

It is easy to check that u(x) = u(Rx) solves (1.39) with ¢ = g(Rz) replacing g. A simple

change of variables yields Poisson’s formula

R? — I$I2/ 9(y)
u(r) = ———— dS(y) (z € Bg(0)), 1.42
=i o S (€ Bal0) (1.2
where the function
R*—|z]* 1
K = Bgr(0 0BRr(0
(33,3/) wnR |l’—y‘n (iBE R( )7y€ R( ))

is Poisson’s kernel for the ball U = Bg(0).

We have established Poisson’s formula under the assumption that a smooth so-
lution of exists. Indeed, the following theorem asserts that this formula does indeed
give a solution.
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Theorem 1.20 (Poisson’s formula for the ball Bg(0)). Assume g € C(0Bg(0)) and define
u by Poisson’s formula (1.43)). Then

(a) ue C*(Br(0)),
(b) Au=0 in Bg(0),

(c) lim u(z) = g(z°) for each point z° € OBR(0).

z—10,2€ BR(0)
Observe that Harnack’s inequality can be established directly from Poisson’s formula
(11.43).

Theorem 1.21 (Harnack’s inequality). Suppose u is a non-negative harmonic function in
BR(.CE()). Then

( R >"_2R—7“ (RR )n—2R+r

R+r R+ru<x0) s ulr) < R—ru(xo)

—r
where r = |z — xo| < R.

Proof. By the regularity and translation invariance properties of harmonic functions, we may
assume zo = 0 and u € C(Bg). Thus, from Poisson’s formula,

R e u(y) )
u(z) = R /<93R(0) p— dS(y) (z € Bg(0)). (1.43)

Now, since R — |z| < |z —y| < R+ |z| for |y| = R, we obtain

1 R—|z|; 1 yn2 1 Rtz 1 n—z/
dsS < < ds.
wnR R+ |x| <R + |x|> /8BR u(y)dS < u(z) < wpR R — |z (R — |a:|) 9B u(y) S

In view of the mean value property,

1
u(0) = ——— u(y) dS,
0= [,
we insert this into the previous estimates to arrive at the desired result. O]

From this, we deduce the Liouville theorem.

Corollary 1.4. If u is an entire function, i.e., it is harmonic in U = R", and u is either
bounded above or below, then u is necessarily constant.

Proof. By shifting, we may assume u is non-negative in R™. Then take any point z € R”
and apply the previous Harnack’s inequality to u on any ball Br(0) with || < R to get

( R >n2R—|x] R >”2R+]a:\u<0)‘

- —u(0) < <
R+ |z] R+|x|“()—“(‘”)—<3_|x| R— ||

Sending R — +o0 here yields u(z) = u(0), and we conclude that u is constant everywhere
in R" since x was chosen arbitrarily. O]
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1.4 Holder Regularity for Poisson’s Equation

Let us motivate the consideration of Holder spaces C*® rather than the classical C* spaces
when dealing with regularity and solvability of elliptic problems of the form Lu = f in U.

For instance, if f € C§°(U) and I' = I'(x) is the fundamental solution of Laplace’s
equation, then the Newtonian potential of f,i.e., w =T % f or

w(z) = / Iz — ) f(y) dy,

belongs to C>=(U). However, if f is merely just continuous, then w is not necessarily twice
differentiable.

Generally, Lu = f in U is uniquely solvable for all f € C*(U) in that there exists a unique
solution u € C?(U) for each such f; namely, the elliptic operator L : C*(U) — C*(U) is a
bijective mapping. On the other hand, we naturally ask if for every f € C(U) the equation
Lu = f has a solution u in C?(U). Interestingly enough, this is not true and so the mapping
L : C?*(U) — C(U) is not bijective. For instance, if L = —A or L = —(A — 1) and for the
equation Lu = f, it is not true that for every f € C'(U) the corresponding solution u belongs
in C?(U) (see the example given below). Fortunately, if we hope to recover the bijectivity
of the map L, we must instead consider the Holder space C*(U) in place of C'(U).

Remark 1.12. One instance where the bijectivity (namely, the invertibility) of the map L
becomes very important is in the method of continuity (see Section @) This method makes
use of the bijection of the solution map and the global C*® reqularity estimates to prove
existence results to general elliptic boundary value problems. Therefore, this gives further
motivation and a glimpse of some topics examined in the later chapters.

Example: Let us provide an example in which the solvability of —Au = f for a carefully
chosen continuous f fails within the class of C? solutions. Take the continuous but not
Holder continuous function

2 2
_Ti T < n+ 2 1 >
) Aaf? \(“logla) 72 " 2(~ log[al}?2)

set
g(x) =/~ log R(z3 — a7),
and let U = Bg(0) with R < 1. Then

u(x) = (23 — 27)(~log |z)"/

belongs to C(Bx(0)) N C=°(Br(0)\{0}) and satisfies

—Au=f in Bg(0)\{0},
{ u=g¢g on 6’B(R()O){, } (1.44)
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but u is not in C?(Bg(0)) since we can check that limy, 0 Diju = —oo. To see this, assume
there exists such a classical solution v. Then w = u — v is harmonic in Bg(0)\{0}, but basic
theory on removable singularities of harmonic functions, see Theorem [I.5] ensures that w
can be redefined at the origin so that w is harmonic in Bg(0). Thus, w is C?(Bg(0)) and
therefore u must also belong to C*(Bg(0)). Hence, lim, o Diiu exists and we arrive at a
contradiction.

In view of the above observations, we should assume the data f is Holder continuous.
We first introduce some definitions. Let xg be a point in R™ and f is a function defined on
a bounded set U containing x.

Definition 1.8. Let o € (0,1). Then f is said to be Holder continuous with exponent
a at xg if the quantity
|f(x) = f(0)|
|z — xo|®
is finite. Here [f]a., is called the a-Holder coefficient of f at x, with respect to U.
Moreover, f is said to be uniformly Holder continuous with exponent « in U if

the quantity @) = £o]
r)—J\Y
fow = sup LD =TWI

syel,aty [T =Y

[flaswo = sup
U

18 finite.

Definition 1.9. Likewise, f is said to be locally Holder continuous with exponent « in
U if f is uniformly Holder continuous with exponent o on compact subsets of U. Obuviously,
the two notions of Holder continuity coincide if U is a compact subset.

Let o € (0,1), U C R™ be an open set and k a non-negative integer.

Definition 1.10. The Hélder spaces C*(U) (respectively C**(U)) are defined as the sub-
spaces of CF(U) (respectively C*(U)) consisting of functions whose k™ order partial deriva-
tives are uniformly Hélder continuous (respectively locally Hélder continuous) with exponent
a in U. For short, we denote CO*(U) (respectively C%*(U)) simply by C*(U) (respectively
c(U)).

Remark 1.13. Let us discuss the endpoint cases for a. If a = 1, C*(U) (respectively
C*(U)) is often called the space of uniformly Lipschitz continuous functions (respectively
locally Lipschitz continuous functions). If a = 0, C*O(U) (respectively C*°(U)) are the
usual C* spaces. Moreover, for o € [0,1], C*(U) denotes the space of functions in C**(U)
having compact support in U.

For £ =0,1,2,..., consider the following seminorms

[ulkor = |Dku|0;U = Sup sup |D’BU|,
1Bl=k U

[ulkair = [D*ulay = ‘Sl|1p [DPu)a,u.
Bl=k
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With these seminorms, we can define the norms

k

k
lullor@y = lulky = ulkow =Y [uljor =D D7 ulow,
=0 =0

[ullora@y = [ulkar = [ulko + [Wkev = [ulky + [D*ulau,

on the spaces C*(U), C**(U). It is sometimes useful, especially in this section anyway,
to consider non-dimensional norms on these spaces. In particular, if U is bounded with
d = diam(U), we set

k k
! / . . .
lulloniy = lulie =Y @ [uljor =D & D7uloy,
=0 j=0

||u||ok,a((7) = |ulp 0 = |l + A" [u] g0 = |l + A" D" -
Not surprisingly, we have the following basic result, which we give without proof.

Theorem 1.22. Let a € [0,1] and U C R™ be an open domain. The spaces C*(U), C*(U)
equipped with the norms defined above are Banach spaces.

The following algebra property holds: the product of Hdélder continuous functions is
again Holder continuous. Namely, if u € C%(U), v € C?(U), we have uv € C7(U) where
v = min{«, 5}, and

HUUHCW(U) < maX(Ldaw*%)HUHCQ(U)HUHOE(U)a

lwollcm oy < llll ey 9]l oo @)-

1.4.1 The Dirichlet Problem for Poisson’s Equation

We now develop the regularity properties of Newtonian potentials. We will use this to
then show that Poisson’s equation in a bounded domain U may be solved under the same
boundary conditions for which Laplace’s equation is solvable.

Lemma 1.5. Let f be a bounded and integrable in U, and let w be the Newtonian potential
of f. Then w € CY(R™) and for any x € U,

Diw(a:):/UDiF(x—y)f(y)dy, i=1,2,...,n.

Proof. 1t is easy to check the following derivative estimates for I':

,
IDil(z —y)] < — |z —y["",
nwy,
1 —-n
Dyl = )| < —lo —y[ ™", (1.45)
2—n—
[ 1D"T (@ —y) < Cn, ] -y,
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From this, the function
o@) = [ DT~ )f) dy
U

is well-defined. We now show that v = D;w. To do so, for € > 0, let n.(z,y) = n(|x — y|/¢€)
where n = n(]z|) is some non-negative radial function in C'(R) with supp(n) C [0, 1],
supp(n’) € [0,2], and

[0, if |z <1,
) =99 i) > 2.

Define
we(z) = /Une(%y)F(fv —y)f(y) dy,

which is obviously in C*(R™). Then, there holds,
@) = Dande) = [ D1y )] 0)dy
Boc(x

Hence, if n > 3,

2ne

2
[Dil'(z = y)| + —[l(z —y)|dy < 1/ loo-

o(z) — Diawe(a)] < ]l /

Bge(x) n — 2

Note that if n = 2, it follows that
lv(x) — Dywe(x)| < 4e(1 + | In 2¢).

In either case, we conclude that as ¢ — 0, w. and D;w, converge uniformly on compact
subsets of R™ to w and v, respectively. Therefore, w € C'(R") and v = D;w. ]

Lemma 1.6. Let f be bounded and locally Hélder continuous in U with exponent o € (0, 1],
and let w be the Newtonian potential of f. Then

(a) we C*U);
(b) —Aw=f in U;
(c) For any x € U,
Dijw(z) = ; Dyl (w—y)(f(y)—f () dy—f () o Dil(z—y)vj(y) dSy, i,j=1,2,...,n.
i i (1.46)

Here, Uy is any domain containing U for which the divergence theorem holds and f is extended
to vanish outside U.
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Proof. Using the derivative estimates of (1.45]) for D?T" and since f is pointwise Holder
cotinuous in U, the function

u(z) = [ Dyl'(z—y)(f(y) — f(z))dy — f(x) Dil'(z — y)v;(y) dS,,

Uy Uy
is well-defined. Let v = D;w and define for ¢ > 0,

_ /U DT (z — y)ne(z, v)f (v) dy,

where 7, is the same test function as in the previous lemma. Obviously, v, € C*(U) and for
e > 0 sufficiently small, differentiating leads to

Dove(a / D (DT (w — y)ne(a, 1)) f () dy

= [ DADITE = e ) () = F@) dy+ @) [ DDT = g)nte. ) dy

Uo

= | DADIT = e ) ) = F@) o+ @) [ D= ) dS,

Uy

Hence, by subtracting this from wu(z), we estimate that
ju(z) — Dyue(z)| = \/B 10— n) DT~ ))(F () — F()) dy
2
< [flos / (1DuT1+ 21Dir ) o — i dy
Bae() €

< (5 +4) 29 Vo

provided that 2¢ < dist(z,OU). Therefore, D;v. converges to u uniformly on compact subsets
of U as ¢ — 0. Of course, v, converges to v = D;w as ¢ — 0. Hence, w € C?*(U) and
u = D;;w. Then, if we set Uy = B,(z) for r suitably large,

1
~dule) = —f@) [ () ds, = fla).
WnT OB ()
This completes the proof of the lemma. ]

A consequence of Lemmas [1.5] and [I.6] is the following theorem. This result should be
compared with Theorem [I.15]|as 1t generalizes that result in that f is assumed to be bounded
and locally Holder continuous in U rather than the stronger condition that f € C?(U).

Theorem 1.23. Let U be a bounded domain and suppose that each point of OU is reqular
(with respect to the Laplacian). Then, if f is a bounded, locally Hélder continuous function
i U, the classical Dirichlet problem

—Au=f inU,
{ u=g on dU, (1.47)
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1s uniquely solvable for any continuous boundary values g in the class of classical solutions,

ie., ue CHU)NCO).

Proof. Let w be the Newtonian potential of f and consider the function v = u—w. It is clear
that —Av =0 in U and v = g — w on QU, but it is obvious that the unique solvability of
this boundary-value problem for Laplace’s equation will imply the desired result. Now, the
existence of classical solutions of Laplace’s equation follows from several methods, e.g. the
Perron method, which are provided in the next chapter, and the uniqueness of the solution
is a consequence of the maximum principles. O

Remark 1.14. Here, a boundary point will be called reqular (with respect to the Laplacian)
if there exists a barrier function at that point. For the definition of a barrier function, see
in the next chapter discussing Perron’s method. There we shall see that if OU is C?
then each point on the boundary is indeed reqular. Furthermore, the regularity theory below
indicates that the unique solution of the above Dirichlet problem on a Fuclidean ball domain

belongs to C**(U) N C(U)

Remark 1.15. If U = Bg(0), the last theorem follows from the two preceding lemmas and
Poisson’s formula (1.43)) for the ball. In fact, we even have an explicit representation of the
unique solution, which is given by

u(z) = /8 o K ds, + / Gl ) f(y) dy.

BRr(0)

where K(x,y) and G(z,y) = I'(y — x) — ¢*(y) are Poisson’s kernel and the Green’s function
on the ball, respectively. In particular, for all x,y € Bgr(0), x # y,

G(x,y) = D(V/(Izllyl/2)* + R? — 2z - y) = D(V/]2]? + [y[? — 22 - y). (1.48)

1.4.2 Interior Holder Estimates for Second Derivatives

For concentric balls of radius R > 0 centered at xy in R", we set By = Bgr(zg) and By =
BQR({L'()).

Lemma 1.7. Suppose that f € C*(Bsy), a € (0,1), and let w be the Newtonian potential of
fin By. Then w € C*%(By) and

|D2w|£),a;Bl S C(TL, a)|f|;),a;Bg7
|D2w|0;31 + RQ[DQM]OGBl < C(”? a)<|f|0;32 + Ra[f]a;Bz)'

Remark 1.16. For general domains Uy C By(xo) and By(xg) C Us, and f € C*(Us) and w
is the Newtonian potential of f over Us. Then the statement of Lemma[I.7 with U; replacing
Bi(xo), i = 1,2, respectively, still remains true.
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Proof of Lemma[1.7]. For any x € By, identity (1.46) yields

Dijw(x) = [ Dyl'(x —y)[f(y) — f(o)]dy — f(z) [ Dil'(x —y)v;(y)dS,
Bs 0B
and thus, by the derivative estimates in ({1.45),
D) < Lo [ s,y Wlos [y e,
nwny, 9B, Wn By

= 27 f(@)] 4+ (BR)" flas < Clm @)1 @)] + R flee).

(07

Then, again (|1.46) implies that for any other point z € B; we have

Dijjw(z) = [ Dyl'(z —y)[f(y) — f(Z)]dy — f(Z) Dil'(z — y)v;(y) dSy.

Ba 0B

Set 0 = |x — | and & = (z + z)/2. Subtracting ((1.51)) from ((1.49) yields

Dijw(w) — Dijw(z) = f(z)l + [f(x) — f(2)] L2 + I3 + Lo + [f(x) — f(Z)]]5 + L6,

where

I = / DT (z — y) — DIz — )}, () dS,,
0B

Is = / Dz’jF(JE - y) dy,
B2\Bs (&)

L= [ IDyI—y) - DT~ p)lf(@) - fw))dy
B2\Bs(e)
We estimate each term I;: For some ¥ between x and Z,

|L| <l|z—z[ | |DDI(Z —y)|dS,
dBo
n?2" 1z — 7|
- R
J\«
< n22"’°‘<ﬁ) (since § = |z — Z| < 2R).

(since | —y| > R for y € 0Bs)
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|| <

1
R-" / ds, = 2"
nwny B>

1 . n 30\«
1] < / DT (@ = 9)IIf (2) = F(u)] dy < —[Flae / 2=y dy < = (5) (o
Bs () Wn B(3/2)5(x) «
Similarly,
n 30\
< (=
=2 ().
E=|[  Dr@-yuwas,
9(B2\Bs(¢))
<|[ pre-vuwas,|+| [ Dre-puwas,
dB> 9B5(8)
1-n
S 277,71 + L (é) / dSy — 271*1 4 27171 —on
M, \2 9B5(€)
|Is] < |z — Z| |DD;;T(z —y)||f(Z) — f(y)|dy (for some Z between = and )
B2\Bjs(§)
ly—&|>0 |x - y|n
< 05[f]a;x/| | € —y|*™" " dy (since |7 —y| < (3/2)[€ —y| < 3|7 —y])
y—¢|=6
3\ @
< . —1 ’VL+1 _ (0% -
< c(n)(1 - )72 () 6 flue
Combining these estimates gives us
[Dyu(@) ~ Dygu(e)| < Cn,0) (R (@) + [l + [l ) 7 — 7"
Hence, this along with (1.50)) completes the proof of the lemma. O

Theorem 1.24. Let f € C§(R™) and suppose u € CZ(R™) satisfy Poisson’s equation,
—Au = f in R™
Then u € C’g’a(R”), and if B = Bgr(xg) is any ball containing the support of u, then
|D2U|E),a;B < C(n’a)|f|z),oc;B7

luly 5 < C(n)R?|flo;p-
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Proof. As indicated in Theorem or Lemma [1.6], we can conclude that u = I'" x f, even
if it was assumed there that f € C?(R") as it still holds true even when f € C§(R™). The
estimates for Du and D*u follow, respectively, from Lemma [l.5{and Lemma [1.7]and the fact
that f has compact support. The estimate for |u|o.p follows at once from that for Du. O

The restriction that v and f have compact support in the last theorem can be removed.

Theorem 1.25. Let U be a domain in R™ and let f € C*(U), a € (0,1), and let u € C*(U)
satisfy Poisson’s equation, —Au = f in U. Then u € C**(U) and for any two concentric
balls Br(zo), Bar(zo) CC U, we have

|u|2,a;BR(ajo) S C(”’ a)(|u|0532R($0) + R2|f|0,a;BgR(ac0))‘ (152)

A consequence of the interior estimate is the equicontinuity on compact subsets
of the second derivatives of any bounded set of solutions of Poisson’s equation. Therefore,
the Arzela—Ascoli theorem implies the following result on the compactness of solutions to
Poisson’s equation.

Corollary 1.5. Any bounded sequence of solutions of Poisson’s equation, —Au = f in U,
where f € C*(U), contains a subsequence converging uniformly on compact subsets of U to
another solution.

As a consequence of this compactness result, we establish an existence result for the
Dirichlet problem. Here, we denote d, = d,(U) = dist(x,0U).

Theorem 1.26. Let B be a ball in R™ and f be a function in C*(B) for which

supd>P|f(z)| £ N < o0
zeB

for some B € (0,1). Then there exists a unique function u € C?(B) N C(B) satisfying

—Au=f in B,
u=0 onJB.

Furthermore, the solution u satisfies the estimate

sup d_?|u(x)| < CN, (1.53)

zeB

where C' = C(p).

Proof. Step 1: Estimate ((1.53]) follows from a simple barrier argument, i.e., let B = Bg(zy),
r = |z — 0| and set w(z) = (R? — r?)P. A direct calculation will show that

R? — )P [n(R* — %) + 2(1 — B)r?]
1 - B)R*(R? —r?)P72 < —B(1 = B)R*(R — )" 2.
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Now suppose that —Au = f in B and u = 0 on 0B. Since d, = R — r, the hypothesis yields
[f(2)] < Ndi™® = N(R—r)"? < —CoN Aw,
where Cy = [3(1 — B)R?]~L. Hence,
—A(CoNw £ u) > 0in B, and CoNw £ u =0 on 0B.
Therefore, the maximum principle implies
lu(z)| < CoNw(x) < CNd? for x € B, (1.54)

which implies ([1.53]) with constant C'=2/8(1 — j3).

Step 2: We now prove the existence of u. Define

m, if f >m,

fmf: f: if|f|f§ﬂ%

—m, if f < —m,

and let { By} be a sequence of concentric balls exhausting B such that |f| < k in By. We
define u,, to be the solution of —Au,, = f,, in B and u,, = 0 on dB. By (1.53)),

sup .’ up(z)| < Csup di | fu(z)| < CN,
zeB zeB

so that the sequence {u,,} is uniformly bounded and —Auw,, = f in By for m > k. Hence, by
Corollary applied successively to the sequence of balls By, we can extract a convergent
subsequence of {u,,} with limit point u in C?(B) satisfying —Au = f in B. Moreover, there
holds |u(z)] < CNd? and so u = 0 on dB. This completes the proof of the theorem. O

1.4.3 Boundary Holder Estimates for Second Derivatives

We may refine the interior Holder regularity estimates by extending them up to the boundary.
We focus only on ball domains but the results certainly apply to bounded and open domains
with smooth boundary. We refer the reader to Chapter [3| for more details on obtaining
regularity estimates up to the boundary for general smooth domains.

We start with some notation. Let R} := {x € R™ |z, > 0} be the usual upper half-space
with boundary T' = OR"}, By := Byg(x¢), B1 = Br(xo) where R > 0 and xy € R’.. Moreover,
set By := By NRY and B = B; NR.

Lemma 1.8. Let f € C*(BJ) and let w be the Newtonian potential of f in By . Then
w € C*%(BY) and

ID*wly it < Ol ot (1.55)
where C' = C(n, a).
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Proof. We may assume B intersects T', otherwise the result is already contained in Lemma
1.7, The representation ([1.46) holds for D;;w within Uy = By . If either i or j # n, then the
portion of the boundary integral

Dil'(x — y)v;(y) dSy = DIz — y)viy) dS,

+ +
dBj dB;

on T vanishes since v; or v; equals to 0 there. The estimates in Lemma for D;jw (i
or j # 0) then proceed exactly as before with By replaced with By, Bs(£) replaced by
Bs(€§) N By and B, replaced by 0By \T. Finally, D,,,w can be estimated from the equation
—Aw = f and the estimates Dy,w for k =1,2,...,n — 1. O

Theorem 1.27. Let u € C*(By)NC(BY), f € CYBy), satisfy —Au= f in By, u=0 on
T. Then u € C**(B) and we have

uly s < Cllulysy + B2 o) (1.56)
where C' = C(n, a).
Proof. Let o' = (x1,x9,...,Zn1), 2* = (2/, —x,) and define
wrN g | f@ ), ifx, >0,
P =)= { e ezl
We assume that By intersects T'; otherwise Theorem already implies estimate ([1.56]).
Now set By := {r € R"|2* € Bf} and D = B U B, U (BN T). Then f* € C*(D) and
|f*’;)’a;32+'
Define
wi@) = [ [P =y) =T = )f()dy
BZ
— [ @y~ T =y, (1.57)
B2
so that w(x’,0) = 0 and —Aw = f in B;. Observe that
| re-iwiy= [ Te-priwa.
BY By

so then we get

wia) =2 [ T@=nf@ds= [ T @)

D

Letting



the remark following Lemma with U; = By and U, = D implies that
|D2w*‘;7a;31+ < COf* [y < 2] f|g’a;B;.
Combining this with Lemma [1.§| yields
’Dleo,a;Bir S C’f|0,o¢;32+'

Now let v = u — w, then Av = 0 in By and v = 0 on T. By reflection, we may extend v
to a harmonic function in By and thus estimate (1.56]) follows from the interior derivative
estimate for harmonic functions (cf. Theorem 2.10 in [11]). O

Theorem 1.28. Let B be a ball in R™ and u and f functions on B satisfying u € C*(B) N
C(B), f € C*(B) and
—Au=f inB,
u=0 ondB,
then u € C**(B).

Proof. By translation invariance, we may assume 0B passes through the origin. The inver-
sion mapping x — x* := x/|z|* is a bicontinuous and smooth mapping of the punctured space
R™\ {0} onto itself which maps B onto a half-space, B*. Moreover, since u € C?(B) N C(B),
the Kelvin transform of u, i.e.,

belongs to C%(B*) N C(B*) and satisfies

2
| |?
Hence, we can apply Theorem to the Kelvin transform v and since by translation

invariance any point of 0B may be re-centered to be the origin, we conclude that u €
C**(B). O

—Au(a) = [0

), x € B*.

We conclude now with an application of the boundary estimates to obtain an existence
result for the Dirichlet problem.

Corollary 1.6. Let p € C*%(B), f € C*(B). Then the Dirichlet problem

—Au=f in B,
u=¢ ondB,

is uniquely solvable for a function u € C**(B).

Proof. Writing v = u — ¢, the problem is reduced to solving the problem

—Av=f—Ap inB,
v=20 on 0B,

which is solvable for v € C?(B) N C(B) by the usual representation formula via Green’s
functions and consequently for v € C%*(B) by Theorem [1.28] O
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CHAPTER 2

Existence Theory

2.1 The Lax-Milgram Theorem

Theorem 2.1 (Lax—Milgram). Let H be a Hilbert space with norm ||-|| and B : HxH — R
s a bilinear form. Suppose that there exist numbers a, § > 0 such that for any u, v € H

(i) Boundedness: |Blu, v]| < allull - ||v]],
(ii) Coercivity: B||lul|* < Blu, ul,
then for each f € L*(U) there exists a unique uw € H such that
Blu, v] = (f,v) forall ve H.
To prove the theorem, we first recall the Riesz representation theorem for Hilbert spaces.

Theorem 2.2 (Riesz representation). If f is a bounded linear functional on a Hilbert Space
H with inner product (-,-), then there exists an element v € H such that < f,u >= (v,u)
for alluw € H.

It is clear that the inner product is a bilinear form which satisfies both the requirements of
the Lax—Milgram theorem. However, the Lax—Milgram theorem is a stronger result than the
Riesz representation theorem in that it does not require the bilinear form to be symmetric.

Proof. Existence: For each fixed w € H, v — B[w, v] is a bounded linear functional on H.
By the Riesz representation theorem, there exists a u € H such that (u,v) = Blw, v] for all
v € H. We define the operator A: H — H by u = Afw].
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Step 1: Claim that A : H — H is a bounded linear operator: To prove A is linear, observe
that

(A[)\lul + )\QUQ], U) = B[/\1u1 + )\2U27 ’U] = /\1B[U1, U] + /\QB[UQ, U]
= (MA[ug] + A Afus], v) for all v € H.

ThU.S, A[)\lul + )\2’&2] = /\1A[U1] + )\gA[UQ]
Moreover, A is bounded since

lAu* = (Au, Au) = B[Au, u] < allull - || Aul|

Hence, [|Au|| < afull.

Step 2: Claim Ran(A) is closed in H.

Let {yi} be a convergent sequence in ran(A) so that there is a sequence {ux} C H for which
yr = Alug] — y € H. By coercivity, ||ur —u;|| < B||Alug] — Alu;]||, which implies {u;} is a
Cauchy sequence in H. Hence, u; converges to some element u € H and y = Aful; that is,
y € Ran(A), thereby proving Ran(A) is closed in H.

Step 3: Claim Ran(A) = H.

On the contrary, assume that Ran(A) # H. Thus, we have that H = ran(A) & ran(A)*
since Ran(A) is closed, and we choose a non-zero element z € ran(A)+. By the coercivity
condition, 3||z||* < Blz,z] = (Az, z) = 0 and we arrive at a contradiction.

Step 4: For each f € L?, the Riesz representation theorem once again implies there exists an
element z € H for which (z,v) =< f,v > for all v € H. In turn, we can find a u such that
z = Alul, ie., (z,v) = (Au,v) = Blu, v] for all v € H. Hence, we have found an element
u € H for which Blu, v] = (f,v) for all v € H.

Uniqueness: Suppose that u; and wus are two such elements satisfying Blus, v] = (f,v) and
Blug, v] = (f,v) for all v € H, respectively. This implies that Blu; —ug,v] = 0 for allv € H.
Now, if v = u; — uy, the coercivity condition implies §||u; — us||* < Bluy — ug, uy — ug] = 0.
Hence, u; = us. O

2.1.1 Existence of Weak Solutions

Our goal here is to prove existence and uniqueness of weak solutions to the Dirichlet boundary
value problem of the following form:

{Lu—l—pu:f in U,

u=0 on U, (2.1)

where p is a non-negative constant to be determined later. Developing this result relies
mainly on certain energy estimates and the Lax-Milgram theorem. In addition, we will now
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focus strictly on the second order differential operator in divergence form with its associated
bilinear form

Blu, v] := /Z DuDv—I—ZbZ )Dsuv + c(z)uv dz,

2,7=1 i=1

and assume that a,b',c € L>°(U) for i,j = 1,...,n. Furthermore, assume U is an open and
bounded subset of R" and denote H := HJ(U).
Energy Estimates

Theorem 2.3. There exists constants o, B > 0 and v > 0 such that
(1) |Blu, v]| < allulla|lv]a
(i) Bllully < Blu,u] + v[|[ul|7zy for all u,v € H.

Proof. We prove the first estimate of the theorem.

|Blu, v]| = ’/ Z T) Uy, V) + Zb’(m)uxv + cuvdm’

i,j=1

<3 e / - Dalte Yl [ 1Dl el [ ool

i,7=1

since it was assumed that a”, b', ¢ € L>®(U). Now apply Holder’s inequality sufficiently many
times and use the definition of the H-norm to get
| Blu, v]| < Cllullul|v]a

for some constant C'.
To prove the second part, the definition of (uniform) ellipticity will be used. By uniform
ellipticity, there is some A\ > 0 such that

/yDu|2dx</Z

1,j=1

Blu.d + 3 W) [ 1Dulllda+ ellimy [ ode 22
=1

T)Ug, Uy, dr = Blu, u) /Zb’ uxu%—cu dx
U

Using the Cauchy’s inequality with € i.e ab < ea? —|— =,a,b>0,e > 0, we have

2 1
Dulju| < e|Duf? + = :>/ | Dulju] dz < 6/ |Du|2dx+—/ o dz.
de U U de [y
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We may choose € > 0 such that e i, [|b]| 2 < 3, then plugging this back into (2.2)
yields

)\/ |Du|2dxgB[u,u]+(2||b2||mw))(e/ |Du|2dx+—/u2dx)+||c||Loo(U)/u2dx
U i—1 U e Jy U

A SN 1
SBMM+§Lwamwzywmmm;+wmwmAMMa

Now some rearrangement of terms yields
A
—/ |Dul? dx < Blu,u] + C/ u? dx.
2 Juy U

Adding 3 [, o [u|* dz on both sides of this inequality gives us our desired result,

A A
Sl < Bluad + (€43 ) Il
]

Remark 2.1. From our estimate (ii), we see that B[-,-| does not directly satisfy the hy-
potheses of the Lax-Milgram theorem whenever v > 0. QOur next theorem will take this into
consideration as it provides our existence and uniqueness result for the Dirichlet boundary
value problem.

Theorem 2.4 (First Existence Theorem for weak solutions). There is a number v > 0
such that for each u > v and each function f € L*(U), there exists a unique weak solution
u € H = H}(U) of the Dirichlet boundary value problem

{Lu+uu:f in U,

u=0 ondU. (2:3)

Proof. Let v be the same from the previous theorem, let 1 > v and define the bilinear form
B, u,v] = Blu, v] + p(u,v) 2 with u,v € H.

Claim: The bilinear form B,,[-, -] satisfies the hypotheses of the Lax-Milgram theorem. More
precisely, we have the bilinear estimate,

| Bulu, v]| = |Blu, v] + p(u, v) 2| < [Blu, v]| + pl(u, v) 2]
< Cllullallvlla + pllullz[v]l
< Cllullallvla,
where in the second line we used the previous theorem and the Cauchy-Swharz inequality.
Moreover, we have the coercivity estimate,
B, Ju,u] = Blu,u] + p(u, w) 2
> Blu, u] + y(u,u)2
> Cllulla,
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where we used the second bound from the energy estimates.
Now fix f € L*(U) and set p;(v) = (f,v)z2. This is a bounded linear functional since,
by the Cauchy-Schwarz inequality,

lpr () = 1(f,0) 2] < [ fllzzllvllze < [1F ]2 llvlla-

Thus, by the Lax-Milgram theorem, we can find a unique u € H satisfying B,,[u, v] = ¢f(v)
for all v € H. That is, u € H is a unique weak solution to the Dirichlet boundary value
problem. O

2.2 The Fredholm Alternative

First, we recall the Fredholm theory for compact operators then apply it to further develop
our existence theory for second-order elliptic equations. Let X and Y be Banach spaces, H
denotes a real Hilbert space with inner product (-,-), and the operator L is the usual second
order elliptic operator in divergence form.

Definition 2.1. A bounded linear operator K : X — Y is called compact provided each
bounded sequence {uy}3>, C X, the sequence { Kuy}32, is precompact in'Y, i.e., there exists
a subsequence {uy, }32, such that { Ky, }52, converges in Y.

Theorem 2.5 (Fredholm Alternative). Let K : H — H be a compact linear operator.
Then

(a) The kernel N(I — K) 1s finite dimensional,

(b) The range R(I — K) is closed,

(¢) R(I - K)=N(I - K*)",

(d) N(I — K)={0} if and only if R(I — K) = H.

Remark 2.2. This theorem basically asserts the following dichotomy, i.e., either
(o) For each f € H, the equation uw — Ku = f has a unique solution; or else

(B) the homogeneous equation uw — Ku = 0 has non-trivial solutions.

Further, should (B) hold, the space of solutions of this homogeneous equation is finite
dimensional, and the non-homogeneous equation

(v) u— Ku = f has a solution if and only if f € N(I — K*)*.
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We shall also require the following basic result on the spectrum of compact linear oper-
ators.

Theorem 2.6 (Spectrum of a compact operator). Assume dim(H) =00 and K : H — H
18 a compact linear operator. Then

(i) 0 € o(K),
(ir) o(K)\{0} = 0, (K)\{0},

(111) o(K)\{0} is finite, or else is a sequence tending to 0.

2.2.1 Existence of Weak Solutions
Definition 2.2. We define the following.
(a) The operator L*, the formal adjoint of L, is
Lo i= = 3 (@ @)s,)ay = D @), + (elo) = 3205, (@) o,
ij=1 i=1 i=1

provided b' € C*(U), i =1,2,...,n.

(b) The adjoint bilinear form B* : H}(U) x HY{(U) — R is defined by
B*[v,u] := Blu,v]
for all u,v € HY(U).

(c) We say that v € H}(U) is a weak solution of the adjoint problem

Lv=f inU,
v=0 on U,
provided that
B[v,u] = (f,u)

for allu e HY(U).
Theorem 2.7 (Second Existence Theorem for weak solutions). There holds the following.

(a) Precisely one of the following statements holds:

(o) For each f € L*(U) there exists a unique weak solution u of the boundary value
problem

Lu=f inU,

{ u=0 on U, (2.4)
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or else

(B) there exists a weak solution uw Z 0 of the homogeneous problem

(2.5)

Lu=0 U,
u=0 on OU.

(b) Furthermore, should assertion () hold, the dimension of the subspace N C H}(U) of
weak solutions of (2.5)) is finite and equals the dimension of the subspace N* C Hy(U)
of weak solutions of

{Lv:O in U, (2.6)

v=0 ondU.
(c) Finally, the boundary value problem (2.4) has a weak solution if and only if

(f,v) =0 for all v e N*.

Proof. Step 1: As in the proof of Theorem [2.4] choose p = v and define the bilinear form
BW[U7 ’U] = B[ua ?}] + V(Ua U)v

corresponding to the operator L,u := Lu + yu. Thus, for each g € L*(U), there exists a
unique u € Hg(U) solving

B, [u,v] = (g,v) for all v e Hy(U). (2.7)

Write u = L7 'g whenever (2.7)) holds.
Step 2: Observe that u € H}(U) is a weak solution of (2.4) if and only if

B, u,v] = (yu+ f,v) for all ve Hy(U), (2.8)
that is, if and only if
uw= L (yu+ f). (2.9)
We can rewrite this as
u— Ku=h, (2.10)

where Ku := L u and h:= L'f.
Step 3: We now claim that K : L*(U) — L?(U) is a bounded, linear, compact operator.
Indeed, from our choice of v and the energy estimates from the previous section, we note

that if (2.7)) holds, then

5”“”?{3((1) < Byfu,u] = (9,u) < [lgllezanllullzzwy < Nlgllezw) llull mywy,
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and so

1K gllz2wy < 1K gl mywy = WLy gl myw) = lellmyw) < Cligllzaw) for g € L*(U)

for some suitable constant C' > 0. However, since H}(U) CC L*(U) by the Rellich-
Kondrachov compactness theorem (see Theorem , we conclude that K is a compact
operator.

Step 4: By the Fredholm alternative, we conclude either

(a) for each h € L*(U) the equation v — Ku = h has a unique solution u € L*(U); or else

(8) the equation u — Ku = 0 has non-trivial solutions in L*(U).

Should assertion («) hold, then according to 7, there exists a unique weak
solution of problem (2.4). On the other hand, should assertion () be valid, then necessarily
v # 0 and we recall that the dimension of the space N of the solutions of u — Ku = 0 is
finite and equals the dimension of the space N* of solutions of the equation

v—K'v=0. (2.11)

However, we have that () holds if and only if u is a weak solution of (2.5) and that (2.11))
holds if and only if v is a weak solution of ([2.6]).
Step 5: Finally, we recall equation w — Ku = h in (a) has a solution if and only if

(h,v) =0

for all v solving (2.11]). However, from (2.11)) we compute that

1

() = 2 f.0) = (") = Lto.

1
Y Y
Hence, the boundary value problem ([2.4)) has a solution if and only if (f,v) = 0 for all weak

solutions v of ([2.6)).
0

Definition 2.3. We say A € X, the (real) spectrum of the operator L, if the boundary value

problem
{ Lu=XM inU,

u=0 on OU,
has a non-trivial solution w, in which case X is called an eigenvalue of L, w a corresponding
eigenfunction. Particularly, the partial differential equation Lu = M for L = —A is often

called the Helmholtz equation.

Theorem 2.8 (Third Existence Theorem for weak solutions). There holds the following.
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(a) There exists an at most coutable set ¥ C R such that the boundary value problem

Lu=Xu+f inU,
u=0 on OU.

has a unique weak solution for each f € L*(U) if and only if X & 2.

(2.12)

(b) If ¥ is infinite, then 3 = {\;}32,, the values of a non-decreasing sequence with A\, —
00.

Proof. Step 1: Let v be the constant from Theorem and assume A > —v. Without loss

of generality, we also assume vy > 0.

According to the Fredholm alternative, problem (2.12) has a unique weak solution for
each f € L*(U) if and only if u = 0 is the only weak solution of the homogeneous problem
Lu=Mu in U,

u=20 on OU.

This is in turn true if and only if © = 0 is the only weak solution of

Lu+~yu=(y+MNu inU,
{ u=20 on OU. (2.13)
Now ([2.13]) holds precisely when
A
uw=L'(y+ Nu= %KU, (2.14)
where, as in the proof of the previous theorem, Ku := yLJ 4 and K is a bounded and
compact linear operator on L*(U).
Now, if u = 0 is the only solution of (2.14)), we see
is not an eigenvalue of K. (2.15)

v+
Hence, we see that (2.12)) has a unique weak solution for each f € L?(U) if and only if
(2.15)) holds.

Step 2: According to Theorem [2.6] the set of all non-zero eigenvalues of K forms either
finite set or else the values of a sequence converging to zero. In the second case, A > —~ and
(2.14) imply that (2.12)) has a unique weak solution for all f € L*(U) except for a sequence

Theorem 2.9 (Boundedness of the inverse). If A & X, there exists a positive constant C
such that

ullrz2@wy < Cllf |22,
whenever f € L*(U) and u € H}(U) is the unique weak solution of

Lu=Mu+f U,
u=0 on OU.

The constant C' depends only on X, U, and the coefficients of the elliptic operator L.
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2.3 Eigenvalues and Eigenfunctions

This section is somewhat of a digression from the rest of the chapter in that we study
eigenvalues for symmetric uniformly elliptic operators. We feel that this follows naturally
from the previous section as we continue to examine properties of compact operators in
the setting of partial differential equations. As such, we only consider symmetric elliptic
operators, but the theory certainly extends to the non-symmetric setting (see []]).

We consider the boundary value problem

{Lw:)\w in U,

w=0 on OU, (2.16)

where U C R” is open, bounded and connected. We say A € C is an eigenvalue of L provided
there exists a non-trivial solution w of problem (2.16)) where w is called the corresponding
eigenfunction of \. As we shall see, L is a compact and symmetric linear operator (actually
it is really the inverse operator L™! that satisfies these properties) and therefore, elementary
spectral theory indicates the spectrum Y of L is positive, real and at most countable. In
particular, we take L to be of the form

n

Lu=— Z (aijuxi)xj,

ij=1
where a” € C*(U) and a¥ = a’* for i,5 = 1,2,...,n. We note that the associated bilinear
form B[, ] associated with this eigenvalue problem is symmetric, i.e., Blu,v] = Blv,u] for

all u,v € H}(U) since L is formally symmetric.

Theorem 2.10 (Eigenvalues of symmetric elliptic operators). There hold the following.
(a) Each eigenvalue of L is real.

(b) Furthermore, if we repeat each eigenvalue according to its finite multiplicity, we have
X = {Ak}iil
where
0<)\1§)\2§>\3§....

and N\, — 00 as k —> oo.

(¢c) Finally, there exists an orthonormal basis {wy}?_, of L*(U) where wy € Hy(U) is an
eigenvalue corresponding to Ny in (2.16]).

Remark 2.3. The first eigenvalue Ay > 0 is often called the principal eigenvalue of L.
Moreover, as examined in the next chapter, basic reqularity theory ensures the eigenfunctions

wg, for k=1,2,..., actually belong to C*(U). In fact, they belong to C*°(U) provided that
the boundary OU is smooth.
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Proof. In fact, it is simple to show that S = L™! is a bounded and compact linear operator
on L*(U). More precisely, for f € L*(U), Sf = u means u € H}(U) is the weak solution of

Lu=f inU,
u=0 on JU,

Now, we claim that S is also symmetric. To see this, let f,g € L*(U) and take Sf = u

and Sg = v. Notice that

(Sf,9) = (u,9) = Blu, ]
and

(f.8g) = (f,v) = Blu,v].
Hence, the basic theory of compact, symmetric linear operators on Hilbert spaces imply
the eigenvalues of S are real, positive and its corresponding eigenfunctions make up an
orthonormal basis of L?(U). Moreover, for n # 0 and A = !, there holds Sw = nw if and
only if Lw = Aw. Thus, the same properties translate to the eigenvalues and eigenfunctions

of L as well. This completes the proof.
O

Theorem 2.11 (Variational principle for the principal eigenvalue). There hold the following
statements.

(a) Rayleigh’s formula holds, i.e.,

B
M = min {Bu,v]|u€ Hy(U)} =  min M
HUHL2(U) u#0 1N H(}(U) HuHLQ(U)

(b) Furthermore, the above minimum is attained by a function wy € HY(U), positive within
U, which is also a weak solution of

Lu=Mu inU,
u=0 on OU.

¢) The principle eigenvalue is simple, i.e., if w € HX(U) is any weak solution o
0

Lu=XMu inU,
u=20 on OU,

then u is a multiple of wi. Therefore, the eigenvalues of L can be ordered as follows:

O<)\1<>\2§)\3§....

2.4 Topological Fixed Point Theorems

This section introduces topological fixed point theorems from functional analysis to establish
the existence of weak solutions to a class of nonlinear elliptic PDEs.
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2.4.1 Brouwer’s Fixed Point Theorem

Before stating and proving Schauder’s fixed point theorem, we state and prove Brouwer’s
fixed point theorem, since we will need it to prove Schauder’s version. In particular,
Schauder’s theorem will be a generalization of Brouwer’s to infinite dimensional Banach
spaces. We adopt the notation that B,.(z) or B(x,r) C R" to represent the ball of radius r
with center z € R", and we denote its closure by B,(z) or B(z,r), respectively.

Theorem 2.12 (Brouwer’s Fixed Point Theorem). Assume u : B1(0) — B1(0) is continuous.
Then u has a fived point, that is, there exists a point x € B1(0)) with u(r) = .

To prove this, we exploit the fact that the unit sphere is not a retract of the closed unit
ball. Namely, we prove

Theorem 2.13 (No Retraction Theorem). There is no continuous function
u: B1(0) — 0B,(0)
such that u = Identity on 0B;(0).

Proof. We proceed with a topological degree argument (see Chapter 1 in [19]). Assume that
the unit sphere is a retract of the closed unit ball and a retraction mapping is given by wu.
Then, homotopy invariance ensures that deg(u, B1(0),0) = deg(Identity, B1(0),0) = 1 and
thus there exists an interior point x € B;(0) such that u(z) = 0. This is a contradiction
with the assumption that u(B;(0)) C 9B (0). O

Proof of Brouwer’s Fized Point Theorem. Assume that u(z) # x for all x € By(0). Thus,
we can define a map w : B;(0) — dB;(0) by letting w be the intersection of 9B;(0) with
the straight line starting at u(x) and passing through x and ending on the boundary. This
terminal boundary point is equal to w(z), or more precisely,

w(z) =+ y(u(x) — z),

where v = «y(z) is a real-valued map that ensures that w(z) has unit norm. Clearly, w is
continuous and w(z) = x for all x € 9B;(0). Therefore, this implies that the unit sphere is
a retract of the closed unit ball and we arrive at a contradiction with Theorem 213 This
completes the proof of the theorem. O

Remark 2.4. Brouwer’s fixed point theorem generalizes to bounded and closed convex subsets
in R™, since such proper subsets with non-empty interior are homeomorphic to the closed unit
ball.
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2.4.2 Schauder’s Fixed Point Theorem

Let us consider a Banach space X with norm || - ||.

Theorem 2.14 (Schauder). Suppose that K is a compact and convezr subset of X. Assume
that A : K — K is continuous. Then A has a fixed point in K.

Proof. Step 1: Fix ¢ > 0. Since K is compact, we can choose finitely many points
Uy, Us, ..., uy, so that the collection of open balls {B(u;, €)}Y, is a cover for K, ie., K C
Uﬁ\ﬁl B(uj,€). Now let K, be the closed convex hull of the points {uy, us, ..., up,}:

K= { ¥ han o< n < LEN 0 =1}

So K. C K from the convexity of K and by definition of K.
Let us define the operator P. : K — K by

ZZN;l dist(u, K — B(u;, €))u;

N for u e K.
Yo dist(u, K — B(uy, €))

P.(u) =

Remark 2.5. We define the distance of x € X from a subset Y C X by

dist(z,Y) = ;g/ dist(z,y) = ;g/ |z — vl

P.: K — K is well-defined since the denominator Zf\il dist(u, K — B(u;,€)) is never zero
since K C Ui\ﬁl B(uj, €), i.e., u belongs to at least one of the open balls in the cover.

Step 2: In addition, P. : K — K is continuous. Suppose {vx} — v in K. Define for each
j=1,..., N, the operator P/ : K — K by

for v € K.

Pi(u) = dist(u, K — B(u;, €))u,
‘ SN dist(u, K — B(us, €))
Then for some constant M,
P/ & < M- inf —y|l —|lv—
1P () — P! (v)]] < L S e =yl = llo =yl
<M- inf Jop—v| —0 as k — 0.
yeK —B(uy)

Hence, each P/ is continuous so therefore

Ne
P.=) P
j=1

is continuous. Moreover, for u € K we have
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[1Pe(u

B SN dist(u, K — B(u;, €) | < Z - dzst (u, K — B(u;, €))(u; — u)
ul= H ZNﬁ dist(u, K — B(u;,€) H H dzst(u K — B(u;,€)) H
ZﬁMwWwK—BWM%WM—M

= N
> iy dist(u, K — B(uy, €))

Step 3: Now consider the operator A, : K, — K, defined by A [u] := P.[A(u)], (u € K,).
As remarked earlier, we note that K, is homeomorphic to the closed unit ball B(0,1) in the
Euclidean space R« for some M, < N,. With this result, we can apply Brouwer’s fixed point
theorem to obtain the existence of a fixed point u, € K, with A[u] = u..

Step 4: We have that {u.}o forms a sequence in K. The compactness of K implies that
there is a subsequence, {uc, }¢,>0, of {uc}es0 that converges to some element v € K. We now
will show that this element v is in fact a fixed point of A. Using the bound from Step 2, one
can establish that

i, — Alug ]l = |4 )] — Alue ]Il = 1P (A )] — Alug]| < 5.
By utilizing the continuity of A, as ¢; — 0 then the bound gives us that ||v — Av|| <0 and

thus Av —v =0. O]

2.4.3 Schaefer’s Fixed Point Theorem

We shall deduce Schaefer’s fixed point theorem from Schauder’s. We shall see that this
theorem is much more useful in application to PDEs since we work with compact operators
rather than compact subsets of our Banach space X. However, before proceeding, we give
two equivalent definitions on the notion of a compact operator or map.

Definition 2.4. A (nonlinear) mapping A : X — X on a Banach space X is compact if

1. for each bounded sequence {ux}32, in X, the sequence {Alug]}2, is precompact, i.e.,
has a convergent subsequence in X .

2. for each bounded set B C X, A(B) is precompact in X, i.e., its closure in X is a
compact subset of X.

Remark 2.6. The former definition of sequential compactness was already provided in the
previous section concerning the Fredholm alternative.

Theorem 2.15 (Schaefer). Suppose A : X — X is a continuous and compact mapping.
Assume further that the set S = {u € X |u = AAlu|, for some 0 < X\ < 1} is bounded. Then
A has a fixed point in X.
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Proof. Suppose u = AA[u] for some A\ € [0,1]. Since S is bounded, we can find M > 0 such
that ||u|| < M. Define A : B(0, M) — B(0, M) by

I if || Afull] < M.
Alu] = M . o
T i Al > .

Set K to be the closed convex hull of A(B(0,1)). Since A is compact, and any scalar
multiple of a compact operator is compact implies that A is compact as well. Using the
result that the convex hull of a precompact set is precompact, we deduce that K is a convex,
closed and precompact subset of X. Hence K is a compact and convex subset of X and
A: K — K is a compact and continuous map. By Schauder’s fixed point theorem, there
exists a fixed point u* € K with Au*] = u*.

We will now show that u* is also a fixed point of A. Assume otherwise; so that [|A[u*]|| > 0

and u* = AM[u'] with A = o < 1. However, [[u*|| = [|A[u*]| = M since [AA[u*]| =
]‘ﬂ?ﬁm” = A[u*] = M, a contradiction.

]

2.4.4 Application to Nonlinear Elliptic Boundary Value Problems

We focus on solving a class of non-linear elliptic PDEs which can be treated as compact
operators on some suitable function space. In such cases, Schaefer’s fixed point theorem can
be applied. We provide a fundamental example.

Consider the semilinear boundary-value problem

{ —Au+b(Du)+pu=f inU

u=0 on 90U, (2.18)

where U is a bounded and open subset of R” and dU is smooth, b : R — R is smooth and
Lipschitz continuous so that

b(p)| < C(|p| +1)

for some positive constant C'. We will prove the following claim.

Theorem 2.16. If u > 0 is sufficiently large, there exists a function u € Hy(U) solving the
boundary-value problem . Furthermore, u also belongs to H*(U).
Proof. We prove the theorem in three main steps.

Step 1: Given u € HL(U), set f := —b(Du). So by Lipschitz continuity we can show
f e L*(U) since
[f(w)] = [b(Du)| < C(|Dul + 1),
then
[ fllz2wy < [|1Dullpew) + € < lull gy + C < oo
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Now we will define the map A : H}(U) — H}(U). Formulate the linear boundary value
problem

{ —Aw+ pw = f(u) inU (2.19)

w =10 on OU.

Since f was shown to belong to L?*(U), linear PDE theory ensures the existence of a unique
weak solution w € H}(U) of the linear problem (2.19). Hence, for u € HJ(U), define
Alu] = w. Moreover, basic elliptic regularity theory yields the estimate

|wllg2wy = 1ALl 22y < Cll flle2w)

for some constant C' (see Theorem in the next chapter). Combining this with the above
L? estimate on f, we get

lwll 2wy = [AlW]la2w) < Clullmy@) +1)

for some constant C.

Step 2: We will show that A : H}(U) — H(U) is a continuous and compact mapping.
Suppose that {ug}32, — w in HJ(U). Since

]| g2y < C(HuHH&(U) +1) for each k € N,

this implies that
sup lwell3(U) < 0.

Then, as a consequence of the Rellich-Kondrachov compactness theorem (see Theorem [A.18)),
there is a subsequence {wy, }52, and a function w € Hj(U) with {wy,}32, — w in Hy(U).

Note that each element of the subsequence satisfies —Awy, + pwy, = b(Duy,;). Now if we
multiply this by any v € H}(U) and integrate over U we obtain

/ —Awy,; v + pwy;v dr = —/ b(Duy; v dz.
U U
Integration by parts on the first term yields

/ Duwy,; - Dv + pwy,v do = —/ b(Duy,)v dx.

U U
Taking the limit as 7 — oo gives us
/ Dw - Dv + pwvdzr = —/ b(Du)vdx for all v € Hy(U).
U U

This shows that A[u] = w and Afu;,] — Alu] in H}(U) given uy — uin H}(U). So A is a
continuous map.
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It is similar to show that A is compact. Take {ux}72; to be a bounded sequence in Hg(U)
We have already shown that sup,, ||wi|| g2y < 00 so {Afug]}72, is a bounded sequence in
H?*(U) N Hy(U); therefore it must contain a strongly convergent subsequence in H}(U).
Again, this is a consequence of the Rellich-Kondrachov compactness theorem, which says
that H?(U) is compactly embedded into H}(U).

Step 3: The final part to show is that if p is sufficiently large, the set
S = {u € H}(U)|u = MA[u] for some 0 < X < 1}

is a bounded set in HJ(U). So let us assume u € S so that u/\ = A[u] or u € H*(U)NH}(U)
and —Au + pu = Ab(Du) a.e. in U. Multiply (2.18)) by u then integrate over U to get

/(—A+uu)udx: /Du-Du+u|u|2dx:/|Du|2+,u|u|2dx
U U U
_ —/)\b(Du)udxg/\b(Du)Hu|dx§/C(|Du|+1)\u]dx
U U U
1 1
< —/(|Du|+1)2+(]|u|2dx§ -/ |Du|2+K/ Wl +1de
2 U 2 U U

for some constants C' and K independent of A. This implies that

1 1
—/ |Du|2dx+(,u—K)/ |u|2dx§K/ dr =: =M?
2 Ju U U 2

where M is a positive constant. From our bounds, note that M is independent of the choice
of u € S. So if we choose

1
— K+ =
Iz +3

then . |
—/ lul® + |Du|? dz < = M*.
2/, 2

Hence, ||ul|giy < M < oc forall uw € S, ie., S is bounded in H(U).

Finally apply Schaefer’s fixed point theorem on X = HJ(U) to show that A has a fixed
point in H%(U) N H(U). By our construction of the mapping A, this fixed point solves our
semilinear elliptic problem.

]

2.5 Perron Method

In this section, we introduce the Perron method to obtain the existence of classical solutions
to Dirichlet problems on general domains provided that the solutions of the same problems
on ball domains are known to exist. For simplicity and as our main example, we consider

29



Laplace’s equation on general domains. That is, let U be a bounded domain in R™ and ¢ be
a continuous function on QU. Consider

{—Au:O in U,

u=¢ on JU. (2.20)

Note that, if U is an open ball, then the solutions of are given by Poisson’s formula via
the Green’s function on a ball domain. Otherwise, we shall use the Perron method in which
the maximum principle plays an important role. First, we define continuous subharmonic
and superharmonic functions based on the maximum principle.

Definition 2.5. Let U be a bounded domain in R™ and v be a continuous function in U.
Then v is subharmonic (respectively superharmonic) in U if for any ball B C U and any
harmonic function w € C(B),

v < (respectively >)w on OB implies v < (respectively >)w in B.

Before introducing the Perron method, we start with some preliminary results.

Lemma 2.1. Let U be a bounded domain in R™ and u,v € C(U). Suppose u is subharmonic
in U and v is superharmonic in U with w < v on OU. Then u < v in U.

Proof. Without loss of generality, let us assume U is connected. Indeed, u — v < 0 on OU.
Set M = maxg(u — v) and

D={zeU|ulx)—v(x)=M}CU.

We claim that D is both an open and relatively closed subset of U and so, by the connect-
edness of U, either D = () or D = U. It is clear that D is a relatively closed subset by the
continuity of u and v. To show D is open, take any point xq € D and take r < dist(xq,0U).
Let @ and v solve, respectively,

Au =0, in B.(xg), uw=u on 0B, (xg),
A =0, in B.(r9), v=v on 0B,(xg).

Now, the existence of the solutions @ and v is guaranteed by Poisson’s formula for U = B,.(zg).
Moreover, by recalling the definitions of subsolutions and supersolutions, we deduce that
u<uand v <win B,(xp). Therefore,

u—v>u—vin B.(xg).
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With u —v < M on 0B,(x), the maximum principle implies « — v < M in B,.(zy). In
particular,
M > (a—0)(xg) > (u—v)(zg) = M.

Hence, (2 —0)(x¢) = M and then 4 — v has an interior maximum at xy. Then, by the strong
maximum principle, @ — 7 = M in B,(xo), i.e., u —v = M on dB,(x), and this holds for
all r < dist(xg,0U). Then u —v = M in B,(zo) and thus B,(xy) C D. We conclude that
D =0or D=U,i.e., either u — v attains its maximum only at OU or u — v is constant in

U. By u <wvin U, we have u < v in U in both cases. O

Remark 2.7. In the proof above, we actually proved the strong maximum principle: Either
u<vinU oru—wis constant in U.

Lemma 2.2. Let v € C(U) be a subharmonic function in U and B CC U is a ball. Let w
be defined by w = v in U\B and Aw = 0 in B. Then w is a subharmonic function in U and
v<w in U.

Remark 2.8. Here, the function w is often called the harmonic lifting of v in B.

Proof of Lemma[2.9 The existence of w is implied by Poisson’s formula for U = B. Also, w
is smooth in B and continuous in U. We also have v < w in B by definition of subharmonic
functions in U. Now take any B’ CC U and consider a harmonic function v € C'(B’) with
w<wuondB. By v<wondB, wehave v < u on dB’. Then, v is subharmonic and u is
harmonic in B" with v < u on 0B’. By Lemma 2.1, we have v < u in B’. Hence, w < u in
B\B'. Additionally, both w and u are harmonic in BN B" and w < u on d(B N B’). So by
the maximum principle, we have w < uw in B N B’. Hence, w < u in B’. We then conclude
that, by definition, w is subharmonic in U. This completes the proof of the lemma. O]

Now we are ready to solve (2.20)) via the Perron method. Set

u,(x) = sup{v(z) |v € C(U) is subharmonic in U, v < ¢ on OU}. (2.21)

Ultimately, our goal is to show that this function u, is indeed a solution of the Dirichlet
problem ([2.20)). The first step in the Perron method is to show that u, in (2.21)) is indeed

harmonic in U.

Lemma 2.3. Let U be a bounded domain in R™ and ¢ be a continuous function on OU.
Then u, defined in (2.21)) is harmonic in U.

Proof. Set

S, = {v|v € C(U) is subharmonic in U, v < ¢ on oU},
and we set & = S, if there is no confusion in its meaning. Then for any x € U,

u,(x) = sup{v(z) |v € S}
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Step 1: The quanitity u, is well defined.
To show this, first set
= mi d M= :
m=miny an max ¢

We note that the constant function m is in § and thus the set S is non-empty. Next, the
constant function M is clearly harmonic in U with ¢ < M on 0U. By Lemma [2.1] for any
veS,

v<M in U.

Thus u, is well-defined and u, < M in U.
Step 2: We show S is closed by taking the maximum among finitely many functions in
S.

Choose arbitrary vy, vs,..., v € S and set
v = max{vy, vy, ..., U}

It follows easily, by definition, that v is subharmonic in U. Hence, v € S.
Step 3: We prove that u, is harmonic in any B, (z) C U.
By definition of u,, there exists a sequence of functions v; € S such that

Zlgglo vi () = uy(xo).

We may replace v; above by any v; € S with v; > v; since
vi(wo) < Ui(x0) < up(2o)-
Replacing, if necessary, v; by max{m,v;} € S, we may also assume
m < v; <u, in U.

For fix B,(zo) and each v;, we let w; be the harmonic lifting in Lemma . Then w; = v; in
U\B,(z¢) and
Aw; =0  in B,(zg),
{ w; =v;  on 0B (xg).

By Lemma w; € S and v; < w; in U. Moreover, w; is harmonic in B,(xy) and satisfies

im w;(x) = uy(x0),
1—>00

m < w; < uy in U,

for any i = 1,2, .... By the compactness of bounded harmonic functions (see Corollary ,
there exists a harmonic function w in B, (z¢) such that a subsequence of {w;}, we still denote
by {w;}, converges to w on compact subsets of B,.(xg). We deduce that

w < uy, in By (zg) and w(zg) = uy,(xo).
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We now claim that u, = w in B, (z¢). To see this, take any z € B,(z,) and proceed similarly
as before, with Z replacing xo. By definition of u,, there exists a sequence {7;} C S such
that

lim 0;(Z) = uy,().
1—00

As before, we can replace, if necessary, v; by max{v;, w;} € S. So we may also assume that
wiéﬂiéuw in U.

For the fixed B,(zo) and each v;, we let w; be the harmonic lifting in Lemma . Then,
w; € S and v; < w; in U. Moreover, w; is harmonic in B, (xy) and satisfies

lim @;(Z) = uy,(2),

71— 00

m < max{v;, w;} < w; <wu, in U,

for any i = 1,2,.... Again, by compactness, there exists a harmonic function w in B, (x)
with a maximum attained at xy. Then, by the strong maximum principle applied to w — w
in B,/ (zg) for any ' < r, we deduce that w — w is constant and thus is equal to zero. This
implies w = @ in B,(zo) and particularly, w(z) = @w(Z) = u,(z). Hence, w = u,, in B, (zy)
since Z was chosen arbitrarily in B,(zo). This proves u, is harmonic in B, (z). O

Observe carefully that u, as given in the previous lemma is only defined in U. To discuss

the limits of u, () as x approaches the boundary, we must make some additional assumptions
on the boundary of U, 9U.

Lemma 2.4. Let ¢ be a continuous function on OU and u,, be the function defined in (2.21).

For some xy € OU, suppose w,, € C(U) is a subharmonic function in U such that
Wy (20) =0, wy(x) <0 for any x € OU\{xo}, (2.22)
then

Jim uy(z) = @(zo).

Proof. As before, consider the set

S, ={v|v e C(U) is subharmonic in U, v < ¢ on 0U}.

To simplify notation, we just write w = w,, and set M = maxgy |¢|. Let € > 0 be arbitrary,
and by the continuity of ¢ at xy, there exists a > 0 such that

lo(z) — (x0)| < € for any = € OU N Bs(xo).
We then choose K suitably large so that —Kw(x) > 2M for any x € OU\ Bs(x). Thus,

lo(x) — p(x0)| < e — Kw for z € 9U.
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Since p(z9) — € + Kw(z) is a subharmonic function in U with ¢(xy) — e + Kw < ¢ on 90U,
we have that p(z¢) — e+ Kw € S,. The definition of u, then implies that

o(xg) —e+ Kw < uy, in U. (2.23)

However, ¢(x¢) + ¢ — Kw is super-harmonic in U with ¢(xg) + & — Kw > ¢ on OU. Thus,
for any v € S, we obtain from Lemma

v(z) < @(xg) + € — Kw(x) for x € U.
Again, by the definition of u,,
uy(x) < (xg) + € — Kw(x) for z € U. (2.24)

Hence, (2.23) and (2.24) imply
lus(x) — o(z0)| < € — Kw(z) for z € U,
and since w is continuous so that w(z) — w(xy) = 0 as v — x¢, we arrive at

lim sup |u,(z) — o(z0)] < €.
T—T0

The desired result follows once after sending ¢ — 0.
O

Remark 2.9. The function w,, satisfying is often called a barrier function. Barrier
functions can be constructed for a large class of domains. One type of domain, for instance,
is when U satisfies an exterior sphere condition at xq € OU, i.e., there ewists a ball
By, (yo) such that

UN By, (yo) =0, UN Byy(yo) = {wo}-

To construct a barrier function at xy, we take
Weo () = T(x —yo) = T(xo — yo) for any x € U

where I' is the fundamental solution of Laplace’s equation. Therefore, w,, is harmonic in U
and satisfies (2.22)). In addition, we mention that the exterior sphere condition always holds
for C? domains.

Combining the previous lemmas and remark, we have essentially constructed a solution
u = u, to the Dirichlet problem (2.20). That is, we have shown the following existence
result.

Theorem 2.17. Let U be a bounded domain in R™ satisfying the exterior sphere condition
at every boundary point. Then, for any ¢ € C(OU), the Dirichlet problem (2.20) admits a

solution u € C*(U)NC(U).
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In summary, the solvability of the Dirichlet problem for Laplace’s equation depends on
both the data g and the geometry of the domain U. As indicated in Lemma the issue
resolves around the following question. When can the harmonic function from the Perron
method be extended continuously up to the boundary? In other words, when are the points
of the boundary regular with respect to the Laplacian? Of course, g being continuous on 0U
and U satisfying the exterior sphere condition are enough to give a positive answer to this
question. Alternatively, another criterion indicating when a boundary point is regular with
respect to the Laplacian can be given in terms of 2-capacities. This criterion is called the
Wiener criterion, and it easily generalizes to uniformly elliptic equations in divergence form.

Let n > 3 and

KP={f:R"—>R,|fe L’ (R"),Df € L"(R;;R")}.
If A C R", we define the p-capacity of A by
Cap,y(A) = inf {/R |DfIPdx - f e KP, A C interior{f > 1}}
By regularization, note that

Cap,(K) = nt | /

for each compact set K C R".
Let xy be a boundary point in OU. Then for any fixed A € (0,1), let

DfPd : f € CX(R), f = xi|

n

Aj={z ¢ U : |x—zo| < N}

The Wiener criterion states that z( is a regular boundary point of U if and only if the
series

> C(lpg (AJ)

\i(n—2)
j=0

diverges.

2.6 Continuity Method

In this section, we introduce the continuity method to prove the existence of classical solu-
tions to general uniformly elliptic equations of second-order. One crucial ingredient of the
method relies on global C** a priori estimates of solutions (see the Schauder estimates in
Section and this provides one important application of the regularity theory for such
equations. In the next chapter, we will investigate the various types of regularity properties
of solutions to uniformly elliptic equations in great detail.
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Let U C R" be a bounded domain, let a¥,b" and ¢ be defined in U with a¥ symmetric.
Consider the second-order elliptic operator

Lu = —a" (x)Dyju + b'(z)Diu + c(x)u in U
and assume L is uniformly elliptic in the following sense:
a”(2)&&; > NE? for any x € U and € € R”

for some positive constant A > 0.
We prove the following general existence result for solutions of Dirichlet boundary value
problem with C*% boundary values involving the operator L with C coefficients.

Theorem 2.18. Let U C R" be a bounded C** domain, let L be a uniformly elliptic operator
as defined as above with ¢ > 0 in U and a*,b,c € C*(U) for some o € (0,1). Then for any
f € C*U) and ¢ € C**(U), there exists a unique solution u € C**(U) of the Dirichlet

problem
Lu=f iU,
{ u=¢ ondU. (2.25)

In fact, we shall prove the solvability of the boundary value problem (2.25)) if the same is
true for the boundary value problem with L = —A, i.e., for Poisson’s equation. Of course,
the latter is a basic known result and so Theorem follows accordingly.

Theorem 2.19. Let U C R" be a bounded C** domain, let L be a uniformly elliptic operator
as defined above with ¢ > 0 in U and a",b,c € C*(U) for some a € (0,1). If the Dirichlet
problem for Poisson’s equation

—Au=f inU,
{ u=¢ on U, (2.26)

has a C**(U) solution for all f € C*(U) and ¢ € C**(U), then the Dirichlet problem,

Lu=f inU,
{ u=¢ ondU, (2.27)

also has a (unique) C**(U) solution for all such f and .

Proof. Without loss of generality, we assume ¢ = 0; otherwise, we consider Lv = f — Ly in
U and v =0 on OU.
Consider the family of equations:

Liu=tlu+ (1 —t)(-A)u=f
for t € [0,1]. We note that Ly = —A and L; = L.
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If we write B
Liu = a (2)Diju + b} (z) Diu + ¢;(z)u,

we can easily verify that B
a;’ (2)&:€; > min(1, A)[¢[*
for any x € U and £ € R” and that
|@ij\0a(r7)a |b¢] a7y ¢t ooy < max(1,A)
independently of ¢ € [0, 1]. Thus,
| Leulca(oy < Clulczew)

where C' is a positive constant depending only on n, o, A, A and U. Then for each ¢ € [0, 1],
L;: X — C*(U) is a bounded operator, where

X={uecC*(U)|u=0 on OU}

is the Banach space equipped with the norm | - [c2.0(7)-
Define the set I containing the points s € [0, 1] such that the Dirichlet problem

Liu=f inU,
VI e 229

is solvable in C%¢(U) for any f € C*(U). We take an s € I and let u = L' f be the (unique)
solution. Then, standard global C%“ estimates (cf. Theorem and the maximum prin-
ciple imply

1L flezawy < Clflca-

For any t € [0,1] and f € C*(U), we can write Lyu = f as
L= f+(Ls—Li)u=f+ (t—s)(Au— Lu).
Hence, u € C**(U) is a solution of

Liu=f inU,
u=0 on U,

if and only if
u=L;'(f+ (t —s)(A— Lu).

For any u € X, set
Tu=L'(f+ (t—s)(Au— Lu))

67



so that T': X — X is an operator, and we claim T is a contraction mapping. Indeed, for
any u,v € X,
[T = Toloaaey = |(t = $)L7((A — L)~ v)) o)
< Ot =s|[(A = L)(u—v)|ca@) < Clt = sl|lu—v|czam).

Therefore, T : X — X is a contraction mapping if |t —s| < 6 := C~'. Hence, for any ¢ € [0, 1]
with [t — s| < 4, there exists a unique u € X such that u = T'u, i.e.,

u=L;'(f+ (t —s)(Au— Lu)).
Namely, for any ¢ € [0,1] with |t — s| < § and any f € C%(U), there exists a solution of

u € C**(U) of

u=0 on 9dU.

Therefore, if s € I, then t € I for any t € [0, 1] with |t —s| < J. So we can divide the interval
[0, 1] into subintervals of length less than 6. By 0 € I, we deduce 1 € I. This completes the
proof of the theorem. O

{Ltu:f in U,

2.7 Calculus of Variations I: Minimizers and Weak So-
lutions

Another approach for establishing the existence of weak solutions to elliptic equations is
through variational methods. This is especially important since if we are searching for
weak solutions of semilinear equations, Lu = f(z,u), then the Lax-Milgram theorem no
longer applies. Variational methods are often used to circumvent this issue. The key idea
is to carefully identify an associated energy functional of the elliptic equation whose critical
points are indeed weak solutions of the elliptic problem.

Remark 2.10. Although variational methods are used to find weak solutions, elliptic requ-
larity theory often ensures that weak solutions are actually strong or classical solutions.

We begin with a simple example for the sake of illustration. Consider

—Au= f(z) inU,
{ u=20 on OU, (2.29)

and consider the functional

J(u) = %/U]Du\de—/Uf(a:)udx, u € Hy(U). (2.30)
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Remark 2.11. In general, we will consider the semilinear case when f = f(x,u) case. In
the special case where f(x,u) = |u|P~ u, then we get the problem

{ —Au = |ulftu  inT,

u =0 on OU. (2.31)

FEquation 1s often called the Lane-Emden equation. It serves as the prototypical semi-
linear equation, and it is the model that we will study in great detail throughout these notes.
Indeed, the exponent p has important implications in both the quantitative and qualitative
properties of solutions and there are three primary cases to consider. In particular, we say
the equation is subcritical, critical or super-critical, respectively, if p < "—*2 p = Z*g or

)
p> n+2

We now show that if « is a minimizer of this functional J(-) in the class of H}(U), then
u a weak solution of ([2.29). Let v be any function in Hj(U) and consider the real-valued
function
g(t) = J(u+tv), t € R.

Since u is a minimizer of J(-), the function ¢(¢) has a minimum at ¢ = 0, and thus we must
have

d
—J(u+ tv)

0=yg'(0) = o

Y

t=0

where explicitly,

J(u + tv) /|D (u+tv) |2dx—/f J(u+tv)d

and p
—J(u+tv) = /D(u+tv)-Dvd:v—/f(x)vd:v.
dt U U

Hence, ¢'(0) = 0 implies
/ Du - Dvdzr — / f(z)vdx =0, forall ve H}(U),
U U

and so u is a weak solution of ([2.29)).

Remark 2.12. The first derivative ¢'(0) is often called the first variation of J(-). In the
next chapter, we develop the reqularity theory for the weak solutions of such elliptic problems.
In particular, it follows that the weak solution of obtained by our variational method
1s a classical solution provided f is reqular enough, e.q., it is Holder continuous.

Clearly, for u to be a weak solution it need not be a minimum; it can be a maximum or
saddle point of the functional, or generally any point that satisfies

d

t=0

This motivates the following definition.
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Definition 2.6. Let J = J(-) be a functional on a Banach space X .

(a) We say that J is Frechet differentiable at uw € X if there exists a continuous linear map
L: X — X* satisfying: For any € > 0, there is a 6 = (e, u) such that

[ J(u+v) = J(u) = (L(u),v)| < e|lvllx whenever [lv]|x <.
The mapping L(u) is commonly denoted by J'(u).
(b) A critical point of J is a point at which J'(u) = 0; that is,
(J'(u),v) =0 forall veX.

We call J'(u) = 0, and the PDE associated with this distribution equation, the Euler-
Lagrange equation of the functional J(-).

Remark 2.13. One can verify that if J is Frechet differentiable at u, then

, o Jutt) = Jw)  d
(J'(u),v) = th—H}O ; = aJ(u+tv) Y

More generally, given the Lagrangian L : R" x R x U — R with L = L(p, z,z) and
using the notation
D,L = (L,,,...,L,,),
D.L=1,,
D,L = (Lg,...,Lys,),

we may consider the functional

J(u) = /U L(Du(x), u(x), z) dz.

As before, we may compute the Euler-Langrange equation associated with this functional
J(+) to be the divergence-form elliptic equation

- Z(Lm(D“: U, )y, + L.(Du,u,z) =0 in U.
i=1

Although we will mostly focus on the special case

Lp,22) = Slpl? = f(2),

which corresponds to the functional (2.30)), the results we cover extend to more general
Lagrangians under some coercivity and convexity assumptions on L (see Chapter 8 in [§]).
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2.7.1 Existence of Weak Solutions

We prove the following theorem.

Theorem 2.20. Suppose that U C R" is a bounded domain with smooth boundary OU. Then
2n

for every f € Ln+23(U) with n > 2, the functional

1
J(u) = —/ |Du|2da:—/f(:£)ud:v
2 Ju U
possesses a minimum ug € HY(U), which is a weak solution of the boundary value problem

—Au= f(x) inU,
{ u=>0 on OU. (2.32)

Proof. Let ug be a minimizing sequence, i.e.,

inf J(u)= lm J(ug).

weHL(U) k—00
Our goal is to show there does exist a function uy € HJ(U) such that

J(up) = lim J(ug) = inf J(u),

k—s o0 weHL(U)

and as discussed earlier, u is indeed a weak solution of the boundary value problem (12.32)).
To prove the existence of a minimum of the functional J, there are three main ingredients
to verify: the functional J is

1. bounded from below,
2. coercive, and
3. weakly lower semi-continuous on H}(U).

1. We prove that J is bounded from below in H := H}(U) if f € L*(U). From Poincaré’s
inequality, we endow the following equivalent norm on H:

1/2
el = ( / |Du12dm)
U

Thus, by Holder and Poincaré’s inequalities, we have

1 2 1 2 (7 2 % 2
T(w) = Sllullfy = Cllllal fllzw) = 5 (Il = Clflew)” = 5 120 2 =5 1 22wy

2. Observe that a function bounded below does not guarantee it has a minimum. Take, for

—L on the real line. For a given minimizing sequence, we must make certain that

instance, ; T
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the sequence does not “leak” to infinity. This motivates our need for a coercive condition.
That is, if a sequence {uy} tends to infinity, i.e., ||ug||z — oo, then J(u) must also become
unbounded. In fact, it is clear that J(ux) — 00 as ||ug||g — oo for our specific problem.
This implies that a minimizing sequence would be retained in a bounded set; that is, any
minimizing sequence must be bounded in H.

By the reflexivity of the Hilbert space H and the weak-x compactness of the unit ball,
the minimizing sequence has a weakly convergent subsequence, we still denote {u}, in H
with limit point ug € H. We shall show that ug is a minimum point of J.

3. We prove J is weakly lower semi-continuous on H.

Definition 2.7. We say a functional J(-) is weakly lower semi-continuous on a Banach
space X if for every weakly convergent sequence

up — ug in X,

we have
J(up) < liminf J(ug).
k—

o0

Clearly, it holds from the definition that J(ug) > liminfy_ . J(ug). Thus, if J is weakly
lower semi-continuous, then J(ug) = limg_, J(ux). Hence, ug is a minimum of J and this
completes the proof of the theorem provided we show J is weakly lower semi-continuous on
H. Note that since f € L%(U), Hélder’s inequality implies that u — [, f(z)udz is a
continuous linear functional on H and thus,

/ f(@)ug de — / f(z)ugdx as k — oo. (2.33)
U U
From the algebraic inequality a® + b > 2ab, we get | Dug|? + |Dug|* > 2Dug - Duy, or

/|Duk|2dx—|—/ | Dug|? da 22/Du0-Dukdx,
U U U

which after subtracting 2 fU | Dug|? dx on both sides of this inequality yields

/|Duk|2dx2/]Du0|2d;v—|—2/Duo-(Duk—Duo)dx.
U U U

This leads to
liminf [ |Duy|* dz > / | Dug|? dz,
k—o0 U U

since
/Duo-(Duk—Duo)dx — 0 as k — .
U
Combining this with (2.33)) yields the desired result. ]
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2.7.2 Existence of Minimizers Under Constraints

We extend the previous result to the Lane-Emden equation in the subcritical case.

Theorem 2.21. Suppose that U C R" is a bounded domain with smooth boundary OU and
let 1 < p < 2. Then there exists a non-trivial weak solution u € Hg(U) of the semi-linear

Dirichlet problem

_ — p—1 ;
{ Au=|uP'u inU, (2.34)

u=0 on OU.

Remark 2.14. We must be careful in setting up our variational procedure for this problem.
For example, we can naively consider the functional

1 1
J(u) = —/ | Dul|? dx — —/ lu|Pt da.
2 Ju p+1Jy
It is not to difficult to show that

d
EJ(U + tU)

= / Du - Dv — |u|’ uv da.
t=0 U

Therefore, a critical point of the functional J in H := H}(U) is a weak solution of (2.34)).
However, the functional J is not bounded from below in H. To see this, fit w € H and

consider
t? !
J(tu) = —/ | Dul|? dv — / lu|Ptt d.
2 Ju p+1Jy

Since p+ 1 > 2, we see that J(tu) — —o0 as t — oo. To get around this problem, we
choose a different functional with constraints.

Proof. Set
1
I(u) = —/ | Du|? dz
2 Jy

under the constraint
M :={ue H:G(u) = / |ulPtt do = 1}.
U

We seek minimizers of [ in M. Let {ux} C M be a minimizing sequence. It follows that
Jo |Dug|? dz is bounded so that {u;} is bounded in H. By the weak-* compactness of
bounded sets in the reflexive Hilbert space H, u; converges weakly to some ug in H. Thus,
the weak lower semi-continuity of the functional / implies that

I(up) < liminf I(ug) =: m. (2.35)

k—o0
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Since p+1 < %, the compact Sobolev embedding theorem implies that H'(U) is compactly
embedded in LPTY(U). Therefore, u;, converges strongly to ug in LPTY(U), which implies
ug € M since

1= / lug|PT da —>/ luo[Pt dr as k — oo.
U U

Thus, I(up) > m. Combining this with yields I(up) = m. This proves the existence
of a minimizer ug of I in M. It remains to show that ug, multiplied by a suitable constant if
necessary, is a non-trivial weak solution of . This entails identifying the corresponding
Euler-Lagrange equation for this minimizer under the constraint, which is provided by the
following theorem whose proof is given on page 60 in [5].

Theorem 2.22 (Lagrange Multiplier). Let u be a minimizer of I in M, i.e.,

I(u) = min I (v).

veM

Then there exists a real number A such that
I'(u) = M\G'(u)

or

(I'(u),v) = MG'(u),v) for all ve H.

We are now ready to show the minimizer ug is a weak solution of ([2.34)) after a suitable
dilation. The minimizer ug of I under the constraint G(u) = 1 satisfies the Euler-Lagrange
equation

(I'(ug), v) = MG (ug),v) for all v € H;
that is,
/ Dug - Dvdx = )\/ [uo|P~tugv dx for all v € H.
U U

From this, we can choose v = ug so that

/ | Duo|? da
)\ = U

- ’
/ |[uo|PT d
U

and thus A > 0. Then we can set @ = aug where \/a?~! =1 since p > 1. Hence

/Dﬂ-Dvd:p:/ |a|P~ v da,
U U

so @ € H is a weak solution of ([2.34)). O
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2.8 Calculus of Variations II: Critical Points and the
Mountain Pass Theorem

In the previous examples, we obtained minimizers to a certain functional, which are weak
solutions to its corresponding PDE. More generally, we also showed that the critical points
of the functional are also weak solutions. In this section, we use the celebrated Mountain
Pass theorem of Ambrosetti and Rabinowitz (see [I]) to find these critical points, which are
often times saddle points rather than minimizers or maximizers. In order to state and prove
the Mountain Pass theorem, we first need to introduce some definitions and an important
deformation theorem.

2.8.1 The Deformation and Mountain Pass Theorems

Hereafter, H denotes a Hilbert space with inner product (-,-) and induced norm || - || and
I : H — R is a nonlinear functional on H.

Definition 2.8. We say I s differentiable at w € H if there exists v € H such that
Iw] = Iu] + (v,w — u) + o(|]lw — v||) for w e H. (2.36)
The element v, if it exists, is unique and we write I'[u] = v.

Definition 2.9. We say I belongs to C'(H;R) if I'[u] exists for each uw € H and the mapping
I': H— H is continuous.

Remark 2.15. (a) The results we develop in this section holds if I € C*(H : R), but for
simplicity, we shall additionally assume that I' : H — H is Lipschitz continuous on
bounded subsets of H. Moreover, we denote by C the collection of such I satisfying these
conditions.

(b) If c € R, we set
A.:={ue H|I[u] <c} and K.:={u € H|I[u] =c¢, I'lu] = 0}.

Definition 2.10. We say u € H is a critical point if I'lu] = 0. The real number ¢ is a
critical value if K. # 0.

In general, H is taken to be an infinite dimensional Hilbert space, thus we need to impose
some sort of compactness condition.

Definition 2.11 (Palais-Smale). A functional I € C'(H;R) satisfies the Palais-Smale com-
pactness condition if each sequence {ux}>, C H such that

(a) {I[ug]}2, is bounded,
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(b) I'lug] — 0 in H,
18 precompact in H.

The following theorem states that if ¢ is not a critical value, we can deform the set A,
into A._. for some € > 0. The principle idea lies around solving an ODE in H.

Theorem 2.23 (Deformation). Assume I € C satisfies the Palais-Smale condition and
suppose that K, = 0. Then for each sufficiently small € > 0, there exists a constant § € (0, €)
and a deformation function

neC(0,1] x H;H)

such that the mappings
ne(u) = n(t,u) for te (0,1, uec H

satisfy
(1) mo(u) = u for ue H,
(ii) ni(u) =u for ug I7c—¢, c+¢),
(iii) Ini(u)] < I[u] for t €[0,1], u € H,
(v) Mm(Acts) C Acs.
Proof. Step 1: We claim that there exist constants o, e € (0,1) such that
|I'[u]|| > o for each u € Appe — Ao (2.37)

To see this, we proceed by contradiction. Assume ([2.37]) were false for all constant o, e > 0.
Then there would exist sequences o, — 0 and ¢, — 0 and elements

Up € Avre, — Aee, with [|I[ug]]| < o (2.38)

According to the Palais-Smale condition, there is a subsequence {uy;}32; and an element
u € H such that u, — w in H. Since I € C'(H;R), implies that I[u] = ¢ and
I'[u] = 0. Hence, K. # () and we arrive at a contradiction.

Step 2: Now fix § such that

5 € (0,¢) and § € (0,0%/2). (2.39)
Denote

A:={ue H|Iu| <c—e or I[u] >c+e},
B:={ue H|lc—0§<I[u] <c+d}.
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Since I’ is bounded on bounded sets, we verify that the mapping u — dist(u, A) + dist(u, B)
is bounded from below by a positive constant on each bounded subset of H. Therefore, the
function,

(1) = dist(u, A)
= dist(u, A) + dist(u, B)’

is Lipschitz continuous on bounded sets and satisfies

(v € H),

0<g<1l,g=0o0on A, g=1 on B.

Now set

{1, iftelo,1],
ht) = { 1/t, ift>1, (2.40)

and define the bounded operator V : H — H by
V(u) = —g(u)h(([I"[u]|)I"[u] (u € H). (2.41)

Consider, for each u € H, the abstract ordinary differential equation

d
{ W((é; = V() >0, (2.4
n(0) = u.

Indeed, there exists a unique global solution n = n(t,u) = n(u) for t > 0, since V is
bounded and Lipschitz continuous on bounded sets. Moreover, if we restrict our attention
to the smaller interval ¢ € [0, 1], it is easy to see that n € C([0,1] x H; H) and satisfies
assertions (i) and (ii).

Step 3: It remains to verify assertions (iii) - (iv).
There holds

%I[m(U)] = L' ()] - %m(U) = I'[me(w)] - V (me(w)) = —g(ne(w) R e ()] ID I e (w)] [

(2.43)
In particular,

d
%I[Ut(u)] <0 for ue H, tel0,1],

and this verifies assertion (iii).

Now fix any point u € A.,s. We claim that n;(u) € A._s, i.e., assertion (iv) holds. To
see this, if n,(u) ¢ B for some t € [0, 1], we are done. So, instead, assume that n,(u) € B for
all t € [0,1]. Then g(n;(u)) =1 for all ¢ € [0,1]. Hence, identity implies that

d

S me(@)] = = (@D [ ()] (2.44)

I | 7[(w)]]] > 1, then @37) and (240) imply that

d

STm(w)] = =]l < —o.
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Likewise, if || I'[n:(w)]|| < 1, then (2.37)) and (2.40) also imply that

Sll(w) < o,

These two inequalities, when combined with (2.39) and (2.44]), imply
Im@)] < Iu] —0?* <c+6—0*<c—6.

This verifies the claim that 7;(u) € A._s and this completes the proof. O

With the help of the Deformation Theorem, we shall now prove the celebrated Mountain
Pass Theorem, which guarantees the existence of a critical point.

Theorem 2.24 (Mountain Pass). Assume I € C satisfies the Palais-Smale condition. Sup-
pose, in addition, that

(i) 1[0] =0,
(1) there exist constants a,r > 0 such that

Iu] = a if |Jull =,

(111) there exists an element v € H with

|v]| > r, I[v] <O0.

Then

c= ;lg max Ig(t)],

where
I':={g € C([0,1]; H) | g(0) = 0, g(1) = v},

18 a critical value of I.

Proof. Indeed, it is clear that ¢ > a. Now assume that ¢ is not a critical value of I so that
K. = 0. Choose a suitably small € € (0,a/2). According to the deformation theorem, there
exists a constant § € (0, €) and a homeomorphism 7 : H — H with

n(Ac-i-(S) - Ac—6

and
n(u) =u if ug I ec—ec+e. (2.45)
Now select g € I' such that
<
max Ilg(t)] < c+4. (2.46)
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Then the composition

g=mnoyg
is also in I, since n(g(0)) = n(0) = 0 and n(g(1)) = n(v) = v as indicated in (2.45). But
then (2.46) implies that

max I[g(t)] < c¢—9,

0<t<1
and so
= inf Ilo)] <c—9§
¢= inf max I{g(t)] < c -9,
which is a contradiction. ]

2.8.2 Application of the Mountain Pass Theorem

We will prove the existence of at least one non-trivial weak solution to a general semilinear
boundary value problem in which the Lane-Emden equation is a special case. Namely,
consider the boundary value problem

—Au= f(u) inU,
{ u=>0 on OU. (2.47)

We assume f is smooth, and for some 1 < p < Z—f2 there holds for some positive constant

c, 3
F(2)] < O+ |2P), |f(2)] < O+ |27 for z € R. (2.48)

If we denote

F(z) :/Zf(s)ds and z € R,
we also assume that 0
0 < F(z) <~vf(z)z for some constant v < 1/2, (2.49)
and for constants 0 < a < A,
alz|PT < |F(2)] < Alz[PT for z € R. (2.50)

Remark 2.16. (a) Indeed, (2.50) implies that f(0) =0 and so u =0 is a trivial solution of
©a7).

(b) It is easy to check that f(u) = |u|P~ u satisfies the above conditions.

Theorem 2.25. The boundary value problem (2.47)) has at least one non-trivial weak solu-
tion.
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The basic idea of the proof is to consider the functional
1
Iu] := / §|Du|2 — F(u)dx foru € H, (2.51)
U

where H = Hj(U) with the induced norm coming from the inner product (u,v) = f[;; Du -
Duvdzx, then show that the Mountain Pass Theorem applies. Therefore, the existence of
a non-trivial critical point of I implies the existence of a non-trivial weak solution of the
boundary value problem. To best illustrate the main ingredients of the proof, we introduce
the following lemmas.

Lemma 2.5. There hold I[0] = 0 and I belongs to the class C.

Proof. Tt is obvious that I[0] = 0. It remains to show that I € C. Consider the splitting

1
Tl = lelP = [ Plu)de = Lfu] + Bl
U
Indeed, for u,w € H,
1 2 1 2 1 2 1 2
Blu) = Sl = & Jutw—ul® = 3+, w—u) 5wl = Lful+ o, ww)-+o( jw—ul).

Therefore, I; is differentiable at w with I{[u] = u, and thus I; € C. Now we show I, € C.
First we make some preliminary observations. Recall that the Lax-Milgram theorem states
that for each element v* € H~1(U), the boundary value problem,

—Av=v* inU,
{ v=0 ondU. (2.52)
has a unique solution v € Hg(U). Write v = Kv* so that
K:H'U)— Hy(U) (2.53)

is an isometry. In particular, recall that if w € Lis (U), then the linear functional w* defined
by

(w*, u) == / wudz for u € H)(U)
U

belongs to H'(U). Here we shall abuse conventional notation and say that w belongs to

H~Y(U). In addition, the subcritical condition implies that p(nQ—fZ) < 2% and so f(u) belongs
2n

to L»+2(U) € H~Y(U) provided that uw € H}(U). The crucial step here is that

Lfu] = K[f(u)]. (2.54)

To see this, notice that
1
F(a+b)=F(a)+ f(a)b+ / (1 —s)f'(a+ sb) dsb?
0
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and thus for each w € H}(U),

Lw] = /F(w)dx: / F(u+w—u)d$:/F(u)+f(u)(w—u)d:v+R
U U U
= Ir(u) +/ DK[f(u)] - D(w —u)dz + R,
U
where the remainder term R, according to ([2.48)), satisfies

|R| < C’/ (1+ |u|1”_1 + |w — u|p_1)|w — u|2 dx
U

§C’1(/U|w—u|2+|w—u|p+1d:v> +CQ</U|u|p+1 da:>£+i</(]|w—u|p+ld:v>lil.

Hence, since p + 1 < 2% Sobolev embedding implies that R = o(||w — ul|). Therefore,
Llw] = Llw] + (K[f(u)], w —u) + o([|w — ul]).
Lastly, if u,v € Br(0) C Hj(U), then
113u) = L[]l = 1 KLf (w)] = KLf ()]l = 11 (w) = f@) a0y < [1f (@) = F)I], 20, -

Furthermore, (2.48|) and Holder’s inequality imply

n+2

)% dx) o

1) = FOl 1y, < O f (0 b= ol =
(

2
-1 -1 2n_n+2 n
<O [ (@ P+ oy = o) P o) = ol gy
< C)u = ol
< O()lu—ol

This shows that I} : H}(U) — Hg(U) is Lipschitz continuous on bounded sets and thus,
I, € C. This completes the proof of the lemma. n

Lemma 2.6. The functional I € C satisfies the Palais-Smale condition.
Proof. Suppose the sequence {u,}$2, in HJ(U) satisfies
(1) {I[ux]};2, is bounded, and (i) I'[uz] — 0 in Hg(U). (2.55)

Obviously, we have that
up — K(f(ur)) — 0 in Hg(U). (2.56)
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Thus, for each € > 0, we have
(s, v)] = ‘/ Duy.- Do f(ugvde| < elo]] for ve HY(D)
U
for sufficiently large k. Namely, if we take v = uy and set e = 1, then we get
| [ 1P = sy da <

for sufficiently large k. From (2.55), we have that

1
<_||Uk||2 - / F(uy) d:r) <(C <o
2 U
for all k. Hence, we deduce from above and (2.49)) that

lual? < C + 2 / Flug) de < €+ 29([ful]? + lus]).

As 27 < 1, we can absorb the last two terms on the right-hand side by the left-hand side to
get that {u}32, is bounded in Hg(U). We can then extract a subsequence {uy,}52,, that

converges weakly to u € Hg(U). Hence, uy, — u in LPH(U) since p + 1 < 2% by the

compact Sobolev embedding. But then f(uy,) — f(u) in HY(U) and so K[f(ux,)] —
K[f(u)] in H}(U). Consequently, from (2.56), we arrive at the desired conclusion that

ur, = u in Hy(U). (2.57)
[
Lemma 2.7. There hold the following statements.
(a) There exist constants r,a > 0 such that

Iu] = a if [Ju] =r.

(b) There exists an element v € H}(U) with

|lv]| > r and Iv] <O0.

Proof. (i) Suppose that v € H}(U) with |Ju|| = r for some 7 > 0 to be determined below.

Then

7“2

By (2.50) and Sobolev embedding, as p + 1 < %, we obtain that

(p+1)(n—2)

L] < C / up o < o / uPrde) T <Ol < .
U U
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Hence,
2 2

][u]Z%—C’r”+12TZ:a>O,

provided that r > 0 is chosen small enough, since p + 1 > 2.
(ii) Fix some non-trivial element v € H}(U) and write v = tu for ¢t > 0 to be determined
below. Then, using ([2.50), we get

TTo] = jtu] — Bftu] = 21, [u] /U Pltu) da < 21, [u] — atr*! /U P+ dz < 0

for t > 0 large enough. O

Proof of Theorem [2.25] Indeed, Lemmas verify all the hypotheses in the Moun-
tain Pass theorem. Hence, the Mountain Pass theorem implies there exists a non-trivial
function u € H}(U) with

I'lu] = u— K[f(u)] = 0.

In particular, for each v € H}(U), there holds

/Du Dvdx—/f Jvdx,

and so u is a non-trivial weak solution of the boundary value problem ([2.47)). O

2.9 Calculus of Variations III: Concentration Compact-
ness

In our variational approach for establishing the existence of solutions to semilinear equa-
tions, we exploited the compact Sobolev embedding due to the subcritical exponent p. In
the critical setting, however, this compactness property fails. Fortunately, we can apply
the principle of concentration compactness to recover the compactness of the minimizing
sequence in the strong topology of Hg(U). In Chapter @, we look at this precise problem of
concentration phenomena and how it relates to the breakdown of the compactness of critical
Sobolev embeddings. More precisely, there we examine finding extremal functions to a con-
strained energy functional for a critical Sobolev inequality. Then we use the concentration
compactness principle to recover strong convergence of a minimizing sequence to obtain a
minimizer for the functional.

For now, we illustrate how to apply the concentration compactness principle to estab-
lish an existence result for a model elliptic problem. Namely, we consider the stationary
Schrodinger equation

_ — p—1, 3 n
{ Au = M+ |ufP~ u in R™, (2.58)

lim|y| o0 u(x) = 0.

where n > 3, A <0 and p > 1.
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We first begin with some background and motivation. The well-known nonlinear Schrodinger

(NLS) equation is given by

{ 0w+ Av = o[ o (,t) in R™ x (0, 00), (2.59)

v(z,0) = ¢(x) in Hy(R"),

where solutions are understood in the usual weak or distributional sense. We say the non-
linearity in equation (2.59) is focusing or defocusing, respectively, if the right-hand side is
—|v[P~1v or +|v|P~1v, but we shall only concern ourselves with the focusing case. In either

case, however, a key feature of the NLS equation is that mass and energy are conserved
quantities, i.e., M(v(t)) = M(v(0)) and E(v(t)) = M(v(0)) where

M(v(t)) = lv(x, 1) do

R"

and 1
E(v(t)) = /n |Dv(x,t)]* dx + o1 lv(z, )P da.

Rn
In the focusing case, we may search for solitary wave solutions of the form v(x,t) = u(x)e™
where u is some function in H*(R™) and A < 0. Then, it is simple to see that u satisfies

—Au = Au+ [ulP" 'y in R™ (2.60)

Indeed, there does exist solutions to equation whenever 1 < p < (n+ 2)/(n — 2),
and this can be established through various ODE or variational approaches. For the sake of
illustration and to keep our presentation simple, we employ the concentration compactness
principle of P. Lions to solve a closely related variational problem. Namely, for n > 3 and
1 < p<1+4/n, we look for minimizers of the energy functional

1 1
E(u) = 5/ | Dul|? dx — ) |lu[PT da

under the constraint ||ul|3 = X for a fixed A > 0. More precisely, we consider
I = inf{E(u) |u € H'(R"), ||lul|5 = \}. (2.61)
We establish

Theorem 2.26. Let n >3 and let p € (1,1 +4/n) and A > 0 be arbitrary. Then I, > —oo
and for any minimizing sequence {uy}>, C H*(R™) of , there exists a sequence of
points {yx}72, C R™ such that the translated sequence {ux(- + yr)} o2, is relatively compact
in H'(R") and whose limit is a minimizer of E(-).

Remark 2.17. (a) If 1 <p < 144/n and for any A > 0, we have that Iy < 0 and is finite.
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(b) Unfortunately, if p > 1+4/n, then I, = —oo for any A > 0, i.e., the energy functional is
no longer bounded from below (and this illustrates the restriction onp). For14+4/n <p <
(n+2)/(n—2), we can circumvent this issue by minimizing a slightly different functional
(see Theorem . For another similar problem that minimizes the Dirichlet integral
over an appropriately chosen admissible set, we refer the reader to Section[6.5 in Chapter

(4l

(c) These minimizers for E(-) are indeed weak solutions to equation (2.60) but for a com-
pletely different parameter \. In particular, the parameter X in the problem for I, (A > 0)
and equation (2.60) (A < 0) are not the same and are opposite in sign.

We shall make use of the following concentration compactness principle which we state
without proof [I7, [18]. Essentially, this proposition asserts that there are three possibilities
when given a bounded sequence in H'(R™). The usual strategy for our variational prob-
lem is to verify that the other two “bad” scenarios cannot happen and that only strong
precompactness of the sequence must hold.

Proposition 2.1. Let A > 0 and suppose {uy}2, is a bounded sequence in H'(R™) such
that ||ugl|3 = X (k= 1,2,3,...). Then there exists a subsequence {uy,}52, satisfying one of
the following three properties.

(I) (Compactness) There exists {y;}32, C R™ such that for any ¢ > 0, there exists R > 0
for which

/ uzj(x—kyj)dxz/\—eforj:1,2,3,....
y;+Br(0)

(II) (Vanishing) For all R > 0,

lim sup / uij (x)dx = 0.
y+Br(0)

Jj—00 yERn

(III) (Dichotomy) There exist a € (0,)) and bounded sequences {uj}3>, and {u?}32, in
H'(R") such that

2n
. 1 2 .
(a) lim [, = (u} + ), — 0 for 2 < q < —.

IERT 112 1 2112 .
(b) a—]lggollujﬂm(m and A —a _}EEOHUJ'HLZ(R”)’

(c) hg(i)glf/n {|Dukj|2 — |Dul)? - |Du§.|2} dz > 0.

Remark 2.18. Roughly speaking, only three situations can occur for such a bounded sequence
of functions. Either (1) the sequence of functions concentrate near the points {y;}, (1I) such
concentration does not occur at any of the points {y;}, or (III) some fraction A € (0,1)
concentrates near some points {y;} while the remaining part spreads away from these points.
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We shall also require the following intermediate result.
Lemma 2.8. There holds I < I, + Ix_o for any A > 0 and « € (0, ).

Proof. Let o € [A/2,\) and 0 € (1, \/a]. Then

u€H (R [|ull? 2 ) =00 uEHH R, s )=
glr—1)/2
—0 inf {E(U) - / [l dw}
we HA (B Jull2, 0 = P+l e
< 01,,

where we used the fact that I, < 0 as indicated in Remark 2.17 Hence,

L<l =1 27¢
o

]oc S Ia + ]/\—oc

Proof of Theorem[2.20. We divide the proof into three main steps.

Step 1: Let {uy}72, be a minimizing sequence for the energy functional E(-). The bound-
edness of the minimizing sequence follows immediately since the sequences {E(u)}32; and
{1 Dug|| z2(mn) }32; are bounded. From the concentration compactness principle of Proposi-
tion , there are three possibilities that may occur. The goal is to show that (II) vanishing
and (III) dichotomy do not happen and that (I) compactness occurs. Once this is verified,
the result follows accordingly. Namely, as done in the preceding sections, we may exploit the
structure of the energy functional E(u) to show the strong precompactness of the minimizing
sequence, i.e., the translated subsequence given in (I) converges to some u € H'(R™) with
HuH%Q(Rn) < A. As usual, the next step is to show that the limit point u is admissible, i.e.,
||u||i2(Rn = ), but this is immediately deduced from case (I) of Proposition and we are
done. Thus, it only remains to show that (II) and (III) cannot happen.

Step 2: (III) dichotomy does not occur.
Assume the contrary. Let o; > 0 and 3; > 0 be such that Haju}H%Q(Rn) = « and
||Bju§||%2(w) = A — . Then a;,3; — 1 as j — oo and we have

E(uy,;) > E(ujl) + E(u?) +7; = E(ozju}) + E(B]ui) + 7;-
where %,7;- — 0 as j — oo. Hence,
I = lim E(u,) 2 Jli_{go[E(Oéju;) + E(Bju3)] = Lo + Dia,

but this contradicts with Lemma 2.8
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Step 3: (II) vanishing does not occur.

Assume otherwise. It suffices to show that if (II) holds, then |[u|/%) Lp+1 @y — 0 as
J — 00 because then liminf;_,o F(uz;) > 0 and we get a contradiction with the fact that
I, < 0. Choose an arbitrary R > 0. For any y € R™ the Sobolev inequality yields

1 1 +1+ (p+1) (p+1)
lali s oy < COR) (Il oy + Nl oy IDulZSG ey )

Choose a sequence {z,}22, C R™ such that

R" C G{zr + Br(0)}

r=1
and each point x € R" is contained in at most ¢ balls where ¢ is a fixed positive integer.
Then, noting that ¢; := sup, |lug, Hll);(lzr—i-BR(O)) — 0 as j — oo and applying the preceding
Sobolev inequality, we get

1 1
w1 tsgny < D N W0 o oy

[e.9]

2+n (p+1) (p+1)
<C) Y {1ty (e s aon) + Ity 12 oo 1Dt NS o |

< Ce, Z/ uk]_ + | Dug, 2] dz < Ol |1 ey — 0

ZT+BR

as j — 0o, where we used Jensen’s inequality in the last line. This proves the claim.
Hence, u is a minimizer of E(-), i.e., F(u) = I, as defined in problem (2.61)). This
completes the proof. O

2.10 Sharp Existence Results for Semilinear Equations

We examine, in more detail, existence results for the semilinear problem

u=0~0 on OU. (2.62)

In this section, we discuss how the existence results obtained by the calculus of variations are
indeed optimal. We will also study how the geometry and topology of the domain influences
the existence and non-existence of solutions. For instance, the existence result of Theorem

{ —Au = |[uff7lu  inU,

2.21|is sharp in that the equation admits no classical non-trivial solution in the super-critical
case. Thus, the only solution is indeed the trivial one.

Theorem 2.27. Let p > (n+ 2)/(n —2) and U C R" is a bounded open subset with
smooth boundary. Further suppose U is a star-shaped domain with respect to the origin. If
u € CHU)N CYU) is a solution of (2.62)), then it must necessarily be the trivial solution
u=0.
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For completeness sake, we include the sketch of the proof, which centers on the following
Rellich-Pohozaev identity.

Proposition 2.2. Let U C R" be a bounded open domain with smooth boundary and star-
shaped with respect to the origin. If u € C*({U) N CY(U) is a solution of ([2.62) with p > 1,
then

da. (2.63)

1
de + = Dul*(z-v)dS =
x—|—2/8U| ul*(z - v)dS T

Proof. Multiplying the PDE by x - Du then integrating over U gives us

/U<:U~Du)(—A>ud:c:/(x-Du>|u\P—1udx.

U

Elementary calculations will show that the left-hand side becomes

2 — 1
/(x-Du)(—A)uda:: ”/ ]Du|2dx——/ |Dul?(z - v) dS.
U n U 2 Jou

Likewise, we calculate that the right-hand term becomes

1
/ |u|P~ u(x - Du) da x - D|u|Ptt dx
p+1
= dz + — ulP™(z - v)dS
p+1 1 )
= dz.
p +1
The identity follows immediately. O]

Proof of Theorem[2.27. Assume otherwise; that is, u is a non-trivial solution of (2.62)). If
we multiply the PDE by u then integrate over U, we obtain

/—uAudx:/ u|Ptt d.
U U

Then, integration by parts and the zero boundary condition imply that

/—uAudx— / u—dS+/|Du|2dx:/|Du\2da:.
ou O U U

Hence, we arrive at
/ lu|Ptt da :/ | Dul? da.

Inserting this into identity (2.63 - we get

dx = Dul*(z - v)dS > 0. 2.64
(55" v=5 [ 1Due- ) ds > 200

The inequality on the right is due to - v > 0 on U, since U is star-shaped with respect to
the origin. But this implies that p < (n +2)/(n — 2), which is a contradiction. O
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For special domains and in the setting of positive solutions, this non-existence result can
be improved to include the critical exponent p = (n+2)/(n —2). For instance, if U = Bg(0)
is the ball of radius R > 0 centered at the origin, then z - v = R > 0 on 0Bg(0). In view of
this and Hopf’s lemma, if we take p > (n+2)/(n —2), then the inequality in becomes
a strict one. Thus, we can deduce that p < (n +2)/(n — 2) and get a contradiction. Hence,
we have the following sharp existence result.

Theorem 2.28. Let U = Br(0) for any R > 0 and p > 1. Then equation (2.34)) admits a
positive classical solution if and only if p < (n+2)/(n — 2).

Interestingly, if U = R", then the role of the exponent p reverses in the Lane-Emden
equation. Particularly, there holds the following sharp existence result.

Theorem 2.29. Let p > 1 and consider the Lane-Emden equation in the whole space

(2.65)

—Au = |[uff7lu in R™,
u>0 in R™.

Then

(a) Equation (2.65)) admits a positive classical solution whenever p > (n+2)/(n —2).

(b) In particular, if p= (n+2)/(n—2), every positive classical solution is radially symmet-
ric and monotone decreasing about some point. Therefore, each positive solution must

assume the form
T
ulzr) =cp| ———
)\2+‘.T—$0‘2

for some constants ¢,, A\ > 0 and some point o € R"™.

(¢) Equation (2.65)) has no positive classical solution in the subcritical case, p < (n+2)/(n—
2). That is, uw = 0 is the only non-negative solution of (2.65)).

Proof. In the critical case, the existence of solutions may follow from standard variational
methods. In either the super-critical or critical case, the existence of solutions, radially sym-
metric solutions in particular, follows from a shooting method for ODEs (for a more recent
approach combining Brouwer topological fixed point arguments with shooting methods, the
reader is referred to [14, 15, 23]). The reason for requiring a shooting method approach is
due to the fact that solutions in the super-critical case no longer have finite-energy or belong
to a suitable L? space. Thus, traditional variational methods may no longer apply in this
case. Parts (b) and (c) follow from the method of moving planes (see Chapter [5)).

O
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Consider the more general nonlinear eigenvalue problem

{ —Au= X u+ [ulP"'u  in U,

u=0 on OU. (2.66)

We have the following non-existence result, which also follows from a Rellich-Pohozaev type
identity. We only state the result and omit the proof (but see [20] for the details).

Theorem 2.30. Let u € C2(U)NCY(U) be a solution of (2.66), U C R™ is a bounded open
domain with smooth boundary, and further assume U is a star-shaped domain with respect
to the origin.

(a) If A <0 andp>(n+2)/(n—2),
(b) orif A <0 andp > (n+2)/(n—2),
then u = 0.

To address the question of existence, particularly that of positive solutions, let A; be the
first eigenvalue of the Laplace operator —A on HJ(U). Recall ) is positive and characterized
by the variational formula (see Theorem [2.11])

/ | Du|? dw
M= inf

uweHL(U), u0 /|u|2 . .
U

The next theorem shows that the previous non-existence result is sharp for A < 0. In fact,

(2.67)

the existence result remains true for non-negative A\ so long as it remains below \;.

Theorem 2.31. Let 1 < p < (n+2)/(n—2) and suppose U C R™ is a bounded open domain
with smooth boundary. Then there exists a positive solution uw € H}(U) to (2.66) provided
that A < \1.

Proof. Consider the functional
1
Bu) = 5/ Dul? — Nuf? de. (2.68)
U

It suffices to establish the existence of a minimizer for the functional F(-) over the admissible
set
M = {u € Hy(U) ||ull oy = 1}

The proof is the same as that of Theorem [2.21] except that the boundedness from below
and the coercivity of the functional need to be verified. Indeed, this is obvious if A < 0.
Generally, however, we can easily check that (2.67)) implies that

1
E(u) > §min {1, 1+ /\/)\1}HU||H3(U) for u € Hy(U), whenever A < \;.

This shows that E(-) is bounded from below and coercive on H}(U). This completes the
proof. n
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The previous existence result for positive solutions can be further refined in the critical
case. The following is referred to as the Brezis-Nirenberg theorem, and we state it without
proof.

Theorem 2.32 (Brezis-Nirenberg). Let p = (n+2)/(n—2) and suppose U C R" is a bounded
open domain.

(a) If n > 4, there exists a positive solution u € HY(U) of (2.66) for any X € [0, \1].

(b) If n = 3, there exists A € [0, A1) such that (2.66) admits a positive solution u € H}(U)
for each X € (A, \1).

(c) If n =3 and U = B1(0) C R?, then A\, = A\ /4 and for X < X\, there is no positive weak
solution to ([2.66)).

Removing the star-shaped condition on the domain can drastically change the existence
of solutions to (2.66)). For example, instead let U be the annulus {z € R"|r; < |z| < ry}
and consider the Sobolev space of radially symmetric functions

Hy 1qg(U) = {u € Hy(U) |u(z) = u(|z|)}.

Since U is an annulus, the key point here is that the embedding Hj,.,(U) < LP*(U)
remains compact for all p > 1! So we may apply a variational method with constraint or
use a mountain pass approach on F(-) within this class of radial functions. Thus, we can
show the existence of infinitely-many radially symmetric positive solutions to for any
l<p<ooand A € R.

Remark 2.19. In each of the existence results in this section, the assumption that solutions
belong to C2(U)NCY(U) can be replaced with the weaker assumption that solutions belong to
H}(U). This is due to the regqularity theory for weak solutions, which we cover in the next

chapter.
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CHAPTER 3

Regularity Theory for Second-order Elliptic Equations

This chapter compiles the basic regularity theory for second-order elliptic equations in diver-
gence form. Roughly speaking, we may classify the study of regularity properties of solutions
into three main types:

(A) Schauder’s approach or the regularity theory for classical solutions
(B) Calderén-Zygmund or L” theory
(C) Hélder regularity of weak solutions (using both perturbation and iteration approaches)

Our goal is to cover elementary regularity results along with their proofs for each type, but
we must prepare some background material beforehand.

3.1 Preliminaries

In this section, we provide a concise treatment of the tools we require in establishing var-
ious regularity results for elliptic equations. Namely, we study the weak LP, BMO and
Morrey—Campanato spaces, the Calderén—Zygmund Decomposition, and the Marcinkiewicz
interpolation inequalities.

3.1.1 Flattening out the Boudary

We often assume that the boundary of our domain U is smooth in some sense in order to
establish regularity estimates at the boundary. Roughly speaking, such assumptions allows
us to flatten the boundary locally and treat it much like what we would do in establishing
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interior regularity estimates. In particular, let U be an open and bounded domain in R™ and

ke{1,2,3,..}.

Definition 3.1. We say the boundary OU is C* if for each point 2° € OU there exists r > 0
and a C* function v : R"™' — R such that, upon relabeling and reorienting the coordinate
axes if necessary, we have

UNB.(2°) = {z € B.(2°) |zp > y(21,...,20_1)}.

Likewise, we say OU is O if OU is C* for each k = 1,2,3,..., and we say OU is analytic
if the mapping v is analytic.

We often need to change the coordinates near a boundary point of OU as to flatten out
the boundary. More precisely, fix 2° € OU and choose v and 7 as in the previous definition.
Define y; = z; =: ®'(z) if i = 1,2,...,n— 1 and y, = z,, — Y(v1,...,2,1) =: ®"(z), and
write

y = O(z).
Similarly, we set z; = y; =: Vi(y) fori = 1,2,...,n— 1 and x, = ¥y + YY1, -, Yn_1) =:
Un(y), and write

z=V(y).
Then

d=y!

and the mapping x +— ®(z) = y “straightens out” the boundary OU near z°. Observe

additionally that these maps are volume preserving, i.e.,

det D® = det DV = 1.

3.1.2 Weak Lebesgue Spaces and Lorentz Spaces

Let X, or more precisely (X, A, 1), be a measure space where p is a positive, not necessarily
finite, measure on X. In most cases, we take X = R" with the usual n-dimensional Lebesgue
measure. For a measurable function f on X, the distribution function of f is the function
d¢ defined on [0, 00) as follows:

dy(t) = p({z € X :[f(2)] > 1}).
Some basic properties of distribution functions are given by the following proposition.
Proposition 3.1. Let f and g be measurable functions on X. Then for all s,t > 0 we have
(a) |g| < |f| p—a.e. implies that d, < dy,
(b) dey(t) = ds(t/|c]) for all c € C\{0},
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(¢) drg(s +1) <dg(s) + dy(),
(d) drg(st) < dy(s) + dy(t).

Now we describe P norm in terms of the distribution function and define the weak LP
space.

Proposition 3.2. For f € L’(X), 0 < p < o0, we have

171, = p / Py (1) dt.

Proof.
p/ tp_ldf(t) dt = p/ Pt / X{zeX:|f(z)|>t} d,LL(l’) dt
0 0 b's
|f ()]
= / / pt?~dt du(x)
xJo
= [ 1@l duta)
b's
= [I/11Z»,
where we used Fubini’s Theorem in the second equality. O]

Definition 3.2. For 0 < p < oo, the space weak LP(X), also denoted by LP (X) or LP*>*(X),
is defined as the set of all pu-measurable functions f such that

C\?
/Moo = inf{o >0:dy(t) < (7) for all t > o}
= sup {tdf(t)l/p it > 0}
is finite. The space weak L>®(X) is by definition L>(X).

Remark 3.1. The weak LP(X) space is commonly denoted by LP (X) or by its equivalent
Lorentz space characterization LP*>°(X). Moreover, we can show that

(a) ||fllLpe =0= f =0 pu a.e.,
() |EfllLeee = |K]|| fllpoos

(¢) IIf + gllzree < max{2,2Y7}(|| fllzoe + |9l o).

Hence, the triangle inequality does not hold so that LP>*(X) is a quasi-normed linear space
for 0 < p < oo. In fact, these spaces are complete.

Obviously, the weak LP spaces are larger than LP spaces.
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Proposition 3.3. For any 0 < p < co and any f € LP(X), we have
[fl[zpoe < [I.fl]zr-
Hence, LP(X) — LP>(X).

Proof. This is a trivial consequence of Chebyshev’s inequality:

ran < [ F@)F du)
{zeX:[f(x)|>t}

Definition 3.3. An operator T : LP(X) — L4(X) is of strong type (p,q) if
1T fllze < Cl[fllze for all f € LP(X).

Similarly, T is of weak type (p,q) if
1T fllLoce < Cllfllze for all f € LP(X).

For completeness, we introduce the Lorentz spaces in which the Lebesgue and weak
Lebesgue spaces are special cases. First, if f is a real (or comlex) valued function defined on
X, then the decreasing rearrangement of f is the function f* defined on [0, 00) by

fr(t) =inf{s > 0| ds(s) <t}
We adopt the convention that inf () = oo, thus f*(t) = oo whenever dg(s) > ¢ for all s > 0.
Now, given a measurable function f on X and 0 < p, g < oo, define

Il = (/f(t”pf*(t»q %)Uq

whenever ¢ < oo, and if ¢ = oo we take
£l o (x) = sup /7 f*(t).
>0

Then the set of all f with ||f||zrax) < 00 is denoted by LP?(X) and is called the Lorentz
space with indices p and ¢. It is interesting to note several properties of the decreasing
rearrangement of f. Namely, we have that

(a) df = df*7

(b) (|f?)* = (f*)? whenever 0 < p < o0,

() [y |fIPdp= [5° f*(t)* dt whenever 0 < p < oo,
)

(d) sup;sot?f*(t) = supysqa(ds(a))? for 0 < g < oo.

In view of these properties, it is simple to verify that LPP(X) = LP(X), L>>(X) = L>®(X),
and weak LP(X) = LP*>(X).
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3.1.3 The Marcinkiewicz Interpolation Inequalities

The following is known as the Marcinkiewicz interpolation theorem. A more general “non-
diagonal” version involving the Lorentz spaces holds, but we shall not make use of it in these
notes and thus omit it.

Theorem 3.1 (Marcinkiewicz interpolation). Let T' be a linear operator from LP(X)NLY(X)
into itself with 1 < p < q < oco. If T is of weak type (p,p) and weak type (q,q), then for any
p<r<gq, T is of strong type (r,r). More precisely, if there exist constants B, and B, such

that

dry(t) < (%)p
and

dry(t) < (%)q

for all f € LP(X) N LYX), then
T flo < C’BgB;“’HfHT for all f € LP(X)N LYX),

where

1 60 1-90

r . p q
and C' = C(p,q,r) is a positive constant. Note that if ¢ = oo, then the LX) and L¥*(X)
spaces and their norms above are replaced with the space L™ (X) = L°*°(X) and its norm.

3.1.4 Calderéon—Zygmund and the John-Nirenberg Lemmas

Lemma 3.1 (Calder6n-—Zygmund Decomposition). For f € L'Y(R"), a fized o > 0, there
exvists E and G such that

(a) R"=EUG, ENG =10,

() |f(z)| <aae ek,

(c) G =U,Qx, {Qr} are disjoint cubes for which
1

o< — |f(z)|dx < 2"a.
@kl Jo,

Lemma 3.2 (John-Nirenberg). Suppose u € L'(U) satisfies
/B o lu— (u)g,|dy < Mr™ for any B,(x) C U.
Then there holds for any B.(z) C U
/ e it lu—(Wa,r| dy < Cr™
By (z)

for some positive py and C depending only on n.
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3.1.5 L” Boundedness of Integral Operators

We briefly introduce some basic results on integral operators of convolution type but our
goal is to ultimately prove the Hardy-Littlewood-Sobolev (HLS) inequality. However, we
will need some basic properties of the Hardy-Littlewood maximal function in order to prove
the HLS inequality. The weak Lebesgue spaces, the Calderén—Zygmund decomposition and
the Marcinkiewicz interpolation inequalities will play very important roles here.

Specifically, the operators we consider are examples of singular integral operators whose
kernels do not belong to a proper L” space but rather to a weak LP space, e.g., the Riesz
type kernel |z|~("=®) belongs to LP*°(R") but not to LP(R") when p = n/(n — «). This
type of issue is relevant in the LP regularity theory for elliptic partial differential equations
studied later in this chapter. Particularly, we shall see in Section that deriving W?2? a
priori estimates on weak solutions requires showing certain differential operators involving
the Newtonian potentials are weak and strong type operators. A similar dichotomy appears
for the maximal function operators.

The function

1
M()(a) = sup Avga ol =sup o [ |7(o = y)ldy
§>0 §>0 NWn0 B;(0)
is called the centered Hardy-Littlewood maximal function of f. Likewise, the function

M(f)(x)= sup  Avgpsylf]

>0, |ly—z|<d

is called the uncentered Hardy-Littlewood maximal function of f.
Clearly, M(f) < M(f). Also, M(f) = M(|f|) > 0, ie., the maximal function is a

positive operator, and obviously M maps L™ to itself, i.e.,

Mz < (1]l

We show that the maximal function as an integral operator is of weak type (1,1) and thus
is of strong type (p,p) for any 1 < p < oo by interpolation. The proof of this requires the
following basic result which is sometimes referred to as the Vitali covering lemma.

Lemma 3.3. Let {By, By, ..., By} be a finite collection of open balls in R™. Then there
exists a finite subcollection {Bj,, Bj,, ..., Bj,} of pairwise disjoint balls such that

¢ k
> 1Bl =3B
r=1 =1

Proof. Without loss of generality, we can assume that the collection of balls satisfies

. (3.1)

|Bi| > |Ba| > ... > |Byl.
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Let j; = 1. Having chosen ji, jo, ..., Ji, let jit1 be the least index s > j; such that U, _; B;
is disjoint from B,. Since we have a finite collection of balls, this process must stop after
some ¢ finite number of steps. Indeed, this yields a finite subcollection of pairwise disjoint
balls B;,, Bj,, ..., Bj,. If some B,, was not selected, i.e., m & {j1, j2, ..., je}, then B, must
intersect a selected ball B;, for some j, < m. Then B,, has smaller size than B, and we
must have B,,, C 3B;,. This shows that the union of the unselected balls is contained in the
union of triples of the selected balls. Thus, the union of all balls is contained in the union
of the triples of the selected balls and so

k l l L
UB|<1U3Bi <> 3B, =33 I8,
=1 r=1 r=1 r=1

This completes the proof. n

Theorem 3.2. The uncentered Hardy-Littlewood maximal function maps L*(R™) to LY (R™)
with constant at most 3" and also LP(R™) to itself for 1 < p < oo with constant at most
3"Pp(p — 1)7L. The same is true for the centered maximal operator M.

Proof. Since M(f) = M(f), we have
{2 € R [IM()(a)| > 1} € {z € B [|M(D)(a)| > 1}
and therefore it suffices to show that
drplt) = e € B[ M (7) () > 1] < LI, (3:2)
Step 1: We claim that the set
B = {r € B M()(@)] > )

is open. Indeed, for z € E, there is an open ball B, containing x such that the average of | f]
over B, is strictly bigger than t. Then the uncentered maximal function of any other point
in B, is also bigger than ¢, and thus B, is contained in E;. This proves that E; is open.

Step 2: Estimate (3.2)) holds.
Let K be any compact subset of E;. For each x € K there exists an open ball B,
containing the point x such that

/ @) dy > 1]B,]. (3.3)

T

Observe that B, C E, for all x, and by compactness there exists a finite subcover

{By,,Ba,, ..., By, } of the subset K.
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In view of Lemma 3.3, we find a subcollection of pairwise disjoint balls B, ;... , By, such

that (3.1)) holds and combining this with (3.3)) yields

Z!ijl_tZ/ Wiy <5 [ 176

since all the balls B%- are disjoint and contained in Et. From this we deduce after
taking the supremum over all compact subsets of K C FE, and using the inner regularity
of the Lebesgue measure. This verifies M = M(f) (as well as M = M(f)) is of weak
type (1,1). Recall that M is of strong type (p,p) with p = oo. Thus, the Marcinkiewicz
interpolation theorem (see Theorem implies the operator M is of strong type (p,p) for
all 1 < p < oo. This completes the proof of the theorem. O

The following result states that the maximal operator controls the averages of a function
with respect to any radially decreasing integrable function. We omit the proof but refer to
Theorem 2.1.10 in [12].

Theorem 3.3. Let k > 0 be a function on [0, 00) that is continuous except at a finite number
of points. Suppose that K(x) = k(|z|) is an integrable function on R™ and satisfies

K(x) > K(y) whenever |z| < |y,
i.e., k is decreasing. Then
Sup [f1* Ke(z) < [|K]| 1@y M(f) ()
for all locally integrable functions f on R"™. Here K (z) = ¢ "K(x/€). An important case is
when K(x) = |x]|* " X|z|<r(z) for any fized R € (0,00) and o € (0,n).

With the results presented above, we are now ready to offer some important applications
of the Hardy-Littlewood maximal functions.

The Lebesgue Differentiation Theorem

Theorem 3.4 (Lebesgue Differentiation Theorem). For any f € L, .(R™), there holds
1
lim —— fly)dy = f(z) for a.e. v € R". (3.4)
r—0 | B.(2)] Jp,(2)
Consequently, | f| < M(f)a.e

Before we prove this, we need some preliminary tools. First, let (X, u) and (Y, v) be two
measure spaces, p € (0, 00| and ¢ € (0,00). Suppose that D is a dense subspace of LP(X, i)
and for every € > 0, T, is a linear operator on LP(X, 1) with values in the set of measurable
functions on Y. Define the sublinear operator

T.(f)(x) = Sup 1 Te(f) ()]
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Theorem 3.5. Let p,q € (0,00). Suppose that for some constant C > 0 and all f € LP(X, p)
we have

1T ()l zas < CllflLe,
and for all f € D,
lim T.(f) = T(f) (3.5)

e—0

exists and is finite for v-a.e. and defines a linear operator on D. Then, for all f € LP(X, u),
the limit (3.5) ezists and finite v-a.e. and uniquely defines an operator T on LP(X, i), by
the continuous extension of T' on the dense subspace D, such that

IT(f)l|zaee < Ol fllze- (3.6)

Proof. Given f € LP(X, i), we define the oscillation of f by

Oy(y) = limsup limsup |T.(f)(y) — Ty(f)(y)|-

e—0 6—0

We claim that for all f € LP(X, ) and § > 0,
v({y € Y'[Os(y) > 6}) = 0. (3.7)

Once, we prove this claim, then Of(y) = 0 for v-a.e. y, which further implies that T.(f)(y) is
Cauchy for v-a.e. y. This implies that T.(f)(y) converges v-a.e. to some T'(f)(y) as e — 0.
The operator T defined this way on LP(X, i) is linear and extends T' defined on D.

We now prove the claim. Choose n > 0 and by density, we may choose g € D such that
| f — gllzr <m. Since T.(g) — T'(g) v-a.e., it follows that O, = 0 v-a.e. From this and the
linearity of T, we conclude that

Of(y) < Oy4(y) + Ogp_y4(y) = Op_y4(y) for v-a.e. y.

Now for any § > 0, we have

v({y €Y [Os(y) > 0}) <v({y € Y[Or4(y) > 6})
{y e Y |2T.(f — 9)(y) > d})

(2C/0)|If = gllze)* < (2Cn/)*.

Then sending n — 0, we deduce (3.7). We thus conclude that T.(f) is a Cauchy sequence
and hence converges v-a.e. to some T'(f). Since |T(f)| < |T.(f)|, the estimate ({3.6) follows
immediately. O

<v
<v
<

Proof of Theorem[3.4 Since R™ is locally compact and is the union of the open balls By(0),
N = 1,2,3,..., it suffices to prove the theorem for almost every x inside the ball By(0).
Then we may take f supported in a larger ball, thus working with f integrable over the
whole space R™.
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Let T.(f) = Kex f, where K () = e "k(x/€) with k = |B1(0)| " x5, (0)- We know that the
corresponding operator T} is controlled by the centered Hardy-Littlewood maximal function
M (see Theorem [3.3)), which maps L!'(R") to L>(R"), i.e., M is an operator of weak type
(1,1). Hence, T, must also be of weak type (1, 1).

It is easy to show that holds in the space of continuous functions f with compact
support, which is dense in L'(R™). From this and the fact that T, maps L'(R™) to L (R"),
Theorem (3.5 implies that holds for all f € L*(R™). O

The Hardy-Littlewood-Sobolev inequality

Consider the integral operator

L = [

and recall its boundedness property in LP spaces, which we introduced earlier as the Hardy-
Littlewood-Sobolev (HLS) inequality. The proof that we present here center on the strong
boundedness of the Hardy-Littlewood maximal function and Theorem [3.3]

Theorem 3.6 (HLS inequality). Let o € (0,n) and 1 < p < g < 0o satisfy

Then there exists a finite positive constant C' = C(n, a, p) such that for all f € LP(R™) there
holds

Ha(N)lza@ny < Cllf | zo@n). (3.8)

Proof. The main idea is to estimate the operator I, in terms of the Hardy-Littlewood maxi-
mal function. Specifically, our estimates below will involve the uncentered maximal operator
M(f). First, observe that I,(f) is well-defined in the Schwartz class S(R") which is dense
in LP(R") for 1 < p < oo. So it suffices to assume that f € S(R™). We may also assume
that f > 0 since I,(|f]) > |1a(f)|- Now consider the splitting,

[ @l dy = B + RO,
where

K = [ =gl d,
lyl<R
BH@ = [ g— )l dy
lyl>R
and R > 0 is some constant to be specified below.
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Estimating .J;: Particularly, J; is given by convolution with the function |y|*"xy<r- So
by applying Theorem we have that

K(f)a) < ME)@) [ ol dy = LR () a).

lyl<R

Estimating .Jy: Holder’s inequality yields
o) (o (r=1)/p
N (e a)
lE=

(p— 1)qw,\@-0/p
(D,
pn

Combining the above estimates for J; and J; yields for any R > 0

L(f)() < C(n, o, p)(ROM(f) (@) + R f|| Log@m))-

Hence, by choosing a constant multiple of the quantity

R = || 15, (M (£) () /",

we reduce the previous estimate to

L(f)(@) < C(n, a, )M (f) (@) || f |kt (3.9)

We deduce the desired result by raising estimate (3.9)) to the power ¢ then integrating over
R™ then using the fact that M(f) is of strong type (p,p) for any 1 < p < oo (see Theorem
. This completes the proof. O

Remark 3.2. Interestingly enough, a weaker version of the HLS inequality holds in the
endpoint case p =1 but with the original estimate (3.8) being replaced with the estimate

1T ()| oo @@y < C(n, @)|| 1 1 gny

where ¢ = n/(n—a). The proof of this is just as before since the weaker inequality will follow
from the estimate (3.9) and the fact that M(f) is of weak type (1,1).

The Hilbert and Riesz Transforms

For completeness, we look at another prototypical example of a singular integral operator of
convolution type called the Hilbert transform. There are several ways to define the Hilbert
transform. First, we give its definition as a convolution operator with a certain principle
value distribution. We begin by defining the distribution W, € §'(R) as

(Wo, ) = 7' lim @d:v—i—?r_l/ Mal:z: for p € S(R).
|z|>1

0 Jeglel<1 z
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Then the Hilbert transform of f € S(R) is defined by

HUX@:G%*ﬁuﬂ:%PV/fiEiEL@:%PV_%g%%@, (3.10)
where
P-V-/_ F(z,y) dy = lim e F(z,y) dy

is the usual principle value integral.

Remark 3.3. Note that -
/ flz —vy) dy
—00 )

does not converge absolutely, and it is important to notice that the function 1/y integrated
over [—1, —¢] N [e, 1] has mean value 0. Therefore, this is precisely why we must treat the
above improper integral in the principal value sense. Also, for each v € R, H(f)(x) is defined
for all integrable functions f on R that satisfy a Holder condition near the point x.

Alternatively, we can define the Hilbert transform using the Fourier transform. Namely,
there holds

Wo(€) = —isgn (&),
and so
H(f)(x) = F(F(©)[~isgn()))(@). (3.11)
An immediate consequence of is that H is an isometry on L*(R), i.e.,

IH ()l 2wy = 1|2 w)-

Moreover, it follows that the adjoint of H is H* = —H. Now, as with the Hardy-Littlewood
maximal operator, the Hilbert transform is of strong type (p,p) for all 1 < p < co. We
sketch the proof of this. First, we can show the estimate

2 |E
e e RIHOR @] >0 < 28 s

holds for all subsets E of the real line of finite measure. This inequality and a basic result
(see Theorem 1.4.19 in [12]) ensure H is bounded on LP(R) for 1 < p < 2. By duality,
H* = —H is bounded on LP(R) for 2 < p < co. Thus, H is also bounded on LP(R) for
2 < p < co. Finally, H is an isometry on L?(R). This completes the proof.

The Riesz tranforms are the n-dimensional analogue of the Hilbert transform. To intro-
duce such transforms, we introduce the tempered distributions W; on R", for 1 < j <n as
follows. For ¢ € S(R"), let

w2

F(n_+2) Y,
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Then the jth Riesz transform of f, denoted by R;(f), is given by convolution with W;,
ie.,

Ry(F)(a) = (f + Wy)(a) = o2 ) py. [ iy

T n |z — y|ntt

for all f € S(R™). Alternatively, the jth Riesz transform can be defined via the Fourier
transform, i.e.,

Ri(f)(z) = f1<—%f<g>><x> for all f € S(RY).

Interestingly enough, the Riesz transforms satisfy
—Identity = Z R?.
j=1

Likewise, the jth Riesz transforms R; are bounded operators on LP(R™) for 1 < p < oo.

Application of Riesz tranforms to the Poisson equation

Another interesting application of Riesz tranforms is to Poisson’s equation. Namely, suppose
that f belongs to S(R") and w is a tempered distribution that solves the elliptic equation

—Au = f.
Indeed, there holds from the Fourier transform that
(4r?lEP)ace) = £(6).
Notice that for all 1 < j,k < n we have

£(6)

0;0u = F~1((2mig;) (2mi&)u(s)) = F ((27Ti§j)(2m§k)W

) = RiRi(f) = Ry Ry(~Au).
That is, we conclude that 0;0,u are functions. Thus, Riesz transforms provide an explicit

way to recover second-order derivatives in terms of the Laplacian.

Remark 3.4. If f = 0, then we reduce the problem to the Laplace equation, Au = 0, and
a solution u € §'(R™) is usually called a harmonic distribution. As above, applying the
Fourier transform yields Au = 0 and so

—Am?|€Pu =0 in S'(R™).

This implies that uw is supported at the origin, so applying the inverse Fourier transform
implies the Liovuille theorem that u is a polynomaial.
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3.2 W?? Regularity for Weak Solutions

This section covers the LP or so-called Calderén-Zygmund regularity theory for second-order
elliptic equations.

3.2.1 W?2? A Priori Estimates

Initially, we will establish the W?2P a priori estimates for the Newtonian potentials, then
extend the result to general elliptic equations.

Theorem 3.7 (W?? a priori Estimate for the Newtonian Potential). Let f € LP(U) for
1 <p<oo, and let w =T x f be the Newtonian potential of f. Then w € W*P(U) and

—~Aw = f(r) ae €U and |D*w|p < C|fllre-

Proof. We provide a sketch of the proof in four key steps. We define the linear operator T’
by

Observe that it suffices to show that 7" is a bounded linear operator on LP(U).
Step 1: T : L*(U) — L*(U) is a bounded linear operator, i.e., T' is of strong type (2,2).
Let f € C°(U) C C3°(R™). Recall that w € C*°(R™) and satisfies Poisson’s equation

—Aw = f(z) in R".

With the help of the Fourier transform and Plancherel’s identity,

[lr@rar= [ 1p@pde= [ aukdr= [ (Kuipde

B 47 N2 T — - 262170062
= /Rn €] w(§)|” dx kJZZIAH &i&5lw(&)]” dg

. V2 e - . 2
- | Dot as > [T

= | D?w|? da.
R

Hence, ||Tf|z: < ||f|lz2 for all f € C°(U) and so T : L*(U) — L*(U) is a bounded linear
operator simply by the density of C§°(U) in L*(U).

Step 2: T is of weak type (1,1).

This result follows from the Calderén—Zygmund decomposition and we skip its proof for
the sake of brevity, but the reader is referred to [5][page 82] for the proof.
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Step 3: T is of strong type (p, p) for any 1 < p < oo.

Since T' is of weak type (1,1) and is of strong type (2,2)—therefore is of weak type
(2,2)—the Marcinkiewicz interpolation theorem implies that 7" is of strong type (r,r) for
1 <r <2 Given any 2 < ¢ < o0, let r = q%l € (1,2]. By duality and the fact that 7" is of
strong type (r,r), we see that

\Tflla = sup (g, Tf):= sup /Ug(:v)Tf(x)d:E

lgllLr=1 llgllr=1
= sup (T'g,f) < sup |[[Tglr|fllze
lgllLr=1 lgllLr=1
< sup Cllgllz-lIflze
lgllLr=1
< ol flla-

Thus, T is of strong type (¢,q) for ¢ € (2,00). Hence, T is of strong type (p,p) for any
1 <p<oo. ]

Now we present the WP a priori estimates on strong solutions for the uniformly elliptic
equation with bounded coefficients:

Lu= f(x) in U. (3.12)

Definition 3.4. We say that u is a strong solution of (3.12) if u is twice weakly differ-
entiable in U and satisfies the equation almost everywhere in U.

Throughout this section, we assume U C R" is bounded and open with C?® boundary,

a¥ € C(U), b € LYU) and ¢ € LI(U) for some ¢ € (n,o00]. In the details below, we will
assume ¢ = oo for simplicity.

Theorem 3.8 (W?P Estimates for Uniformly Elliptic Equations). Let 1 < p < oo, f €
LP(U), and let w € W?P(U) N HJ(U) be a strong solution of (3.12). Then

[ullwzr < C ([ullze + [ f]]ze)
where C' = C(X\, A, n, p, U, ||b;|| =, ||c|| =) is a positive constant.

Proof. The proof can be separated into two major estimates—the interior estimate and the
boundary estimate.
Part I: Interior Estimate

1 D?ul| roicy < C (|| Dull oy + ull oy + | f1 o) (3.13)

where K is any compact subset of U.
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Part II: Boundary Estimate

1D?ul|onus) < C (1 Dullerwy + lulleo@y + 1 f e y) (3.14)
where Us = {z € U | dist(z,0U) > 0}.

Part III: The interior and boundary estimates imply

lullwr@y < C (lullzew) + 1 lzvw)) - (3.15)

To see this, it is obvious that both estimates yield

ullw2e@y < lJullwze@o.,) + lullwrws)
< C (|1 Dull ey + lulle@y + 1 f e @) - (3.16)
We have the following estimate
1/2 1/2
1Dl oy < Cllull ot 1Dl i,
C
< €| D?ul| oy + EHUHLP(U)

where the first inequality is the well-known Gagliardo—John-Nirenberg interpolation inequal-
ity and the second inequality is the basic Cauchy inequality with e. Substituting this into
(13.16) yields
2 O
lullwr@) < CellD7ull Loy + C | llullzewy + lullow) + [ fllzey | -

If we choose € < 55, we can absorb the Ce||D?u||») term on the right-hand side by the

left-hand side and arrive at the desired estimate. O

Let us give provide the details in obtaining interior and boundary estimates.

Part I: Interior Estimates We proceed using the well-known method of frozen coefficients.
Define the cut-off function ¢ € C°(R) to be the function

(1 ifs<1,
pls) =1 if s> 2.

Then we measure the module continuity of the coefficients a” with

€(9) = sup |a” (z) — a” (y)|.

lz—y|<,x,yel,1<i,j<n

Note that the function €(0) — 0 as § — 0. Then for any zg € Uss, let

oo = (F57) and o) = ajate)
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We compute

a'l (xO)aij;Ul'j = (a”(wo) — “ij(x))ﬁfjguﬁj e (x)aij;;j
= (a”(z0) — a”(x)) af;ﬁj +(z)e (@) aai?xj
n aij(x)u(a:)af;?xj + 2aij(x)g_;§_2
— (¥ (a0) — az’j(x))afjg;j + n(x) <bi(x)g§i + c(x)u — f(x))
o aul) 5o+ 2 (o) 5

= F(z) for x € R".

Notice that all terms in F' are supported in Bys(79) C U. By the uniformly elliptic condition,
we can assume a” () = d;; by a simple linear transformation. Thus, w and '« F are solution
of —Awu = F, which implies w = I x F' by uniqueness. Then, by our earlier estimates on the
Newtonian potential, we obtain

| D*W|| 1o (Bas(z0)) = || D*W|| Loy < C||F||o@ny = ClIF || Lo(Bas (o)) (3.17)
Estimating each term in F' yields
IF || 2o (Bas (o)) < €(20)|| D*wl| o (Bas (o)) + I1f 12p (Bas (o)) + C (1DU| o (Bas o)) + 1l (Bas (o)) -

Combining this estimate with the estimate (3.17)) and choosing § sufficiently small so that
Ce(29) < 1/2, we have

| D*w]| 1o (Bys(0)) < %||D2w”LP(B%(xo)) + C (1 £l 2o Bastaoy) + 1DUll Lo (Bas o)) + 1l Lo (Bas(aon)) -
which is equivalent to

ID*w| o (Bs o)y < C (1flo(Baseo)) + 1Dl LoBastao)) + Nl o(as o)) -
Hence,

1 D*ull o850 < C (1fLr(Basteo)) + 1Dl Lo(Bas(ao)) + 1l Lo (s w0))) -

where we used the fact that ||D?ul|Le(B,(z0)) = [|D*W||Lr(By (o)) since u = w on Bs(xo).

We can easily extend this estimate from a d-ball to any compact subset K of U via a
standard covering argument. Namely, for any compact subset K C U, let § < %dz’st(K ,oU),
then K C Uss and we can derive the desired interior estimate:

1D*ull oay < C (I f o) + [1Dull o) + ull o)) -
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Part II: Boundary Estimates.

The main ideas used in establishing the boundary estimate are relatively similar to the
proof of the interior estimate. Roughly speaking, we may flatten out the boundary and
treat the regularity problem as one on an upper half-space. We refer the reader to [5, [6], [1T]
for more details and we only sketch the main steps here. More precisely, for any point
xo € OU, the intersection Bs(xg) N AU is a C*“ graph for § > 0 small enough. Therefore,
after flattening out the boundary, we may assume that this graph is given by

T, = h(x1,29,...,2,1) = h(2'),

and U lies on top of this graph locally. Now let y = ¥(z) = (2’ — z{, z, — h(2')) so that
¥ is a diffeomorphism mapping a neighborhood of zy onto the upper ball B (0) = {y €
B.(0) |y, > 0}. Under this map, the elliptic equation becomes

{ —a" (y) Diju(y) + bi(y) Diuly) + &(y)uly) = f(y) in BF(0), (3.18)
u(y) =0 on dB;(0). '

Here the coefficients come from the original coefficients under the diffeomorphism . For
example, using the chain rule,

a(y) = gﬁ (Q/J‘I(y))a%(w‘l(y))%ﬁ(#fl(y))-

We can assume a“(0) = d,;; otherwise we can apply a linear transformation to ensure this
property holds. Moreover, since planes are mapped to planes under this diffeomorphism,
we can assume problem (3.18)) is valid even for smaller r. Applying the method of frozen
coefficients with w(y) = ¢(2|y|/r)u(y) yields

—Aw(y) = F(y) in B (0).

Now let w(y) and F'(y), respectively, be the odd extension of w(y) and F(y) from B} (0) to
B,.(0). More precisely,

_ WY1, Y2, - - Yn—1,Yn) if y, > 0,
W = )
(y) { _w(yh Y2, -5 Yn—1, _yn) if Yn < 0.
and ( )
n Fy17y2>"'7yn—1ayn 1fyn207
F = )
(v) { —F(y1,92, - Yn-1,—Yn) if yn <0,

We can show that

—Aw(y) = F(y) in B,(0).

109



Thus, we can apply the same arguments as before to get the basic interior estimate for this
problem, i.e.,

1 D?ul| o8, 20)) < C U1 lLr(Bar o)) + DUl Lo(Bsr (w0)) + 10/l Lo (Bor (w0)))
< C(If [l 2o (Bar o)ty + (1D Lo (Bay (o)) + 1|1l Lo (Bar (o)),

and this holds for any xy on OU and for some small radius r > 0. Note that the last line of
the previous estimate follows from the symmetric extension of w to w from the half ball to
the whole ball.

Furthermore, these balls form a covering of the boundary OU. By compactness of this
boundary, there is a finite cover B,,(x;), i = 1,2,...k. These balls also cover a neighborhood
of QU including U\Us for some suitably small 6 > 0. Summing the estimates over each ball
in the finite cover will imply the desired boundary estimate

[ullwee@nvs) < CUIDullLew) + [ulle@) + [ flle@))-

This completes the proof of the W?2P a priori estimates.

3.2.2 Regularity of Solutions and A Priori Estimates

Let 1 < p < oo. So far, we have established a priori estimates to solutions in the W?2?(U)
norm by assuming weak solutions were already strong solutions belonging to H(U) N
W2P(U). Here we shall only assume u is a weak solution in W,”(U). Then we actually
show that u necessarily belongs to W*P(U) with the help of the a priori estimates. The
procedure for doing so has many points in common with our earlier derivations of the W?2?
a priori estimates but with some subtle differences.

We say u € Wy(U) is a weak solution of

Lu=f inU,
{ u=0 on U, (3.19)

if for any v € Wy (U) with 1/p+1/q = 1,

/U [aij (x)DjuDjv + bi(x)(Diu)v + C(x)uv} dr = /Uf(m)v dz.

Although this notion of weak solution relies on duality to define the equation in the distri-
bution sense, the density of C5°(U) in W *(U) ensures it is enough for the identity to hold
for all test functions v € C§°(U). Our main result is the following.

Theorem 3.9. Letn > 2 and 1 < p < o0 and let U C R™ be a bounded and open subset.
Suppose that L is a uniformly elliptic operator whose leading coefficient a(z) is Lipschitz
continuous in U, and the lower-order terms b'(z) and c(x) are bounded functions in U. If
w e WyP(U) is a weak solution of the boundary value problem where f € LP(U), then
u e WP(U).
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We shall see that the uniqueness of weak solutions of is an important ingredient
in establishing our regularity result. We only consider the case p > 2 since the uniqueness
of solutions is simpler in this situation. The reason is that the uniqueness of weak solutions
will allow us to improve the a priori estimates.

Lemma 3.4. Assume that if u € WP(U) is a weak solution of
Lu = f(x) in U, (3.20)
then the a priori estimate

ullwezr@y < Clullzewy + 1 fllze@))

holds. In addition, assume uniqueness holds in the sense that if Lu = 0, then uw =0 in U.
Then, for the unique solution u of (3.20)), we obtain the refined a priori estimate

[ullwzow) < O fllow)- (3.21)
Proof. Assume the inequality (3.21]) is false. That is, there exists a sequence of functions
(fx) with || f]|Lr@y = 1 and the sequence of corresponding solutions (uy,) satisfying
Luk = fk(l’) in U,
such that
| |lw2e @y —> 00 as k — oo.

We consider the normalized functions

v 1= uk/ [|urll o) and gi = fio/llukll o)
Thus,
Jollzry = 1 and flgullisw) — 0 as k — oo, 522
and
Loy, = gi(x) in U. (3:29)

Of course, we have the a priori estimate

[ollw2r@wy < Cllokllew) + grllrw))-

Combining this with shows (vy) is bounded in W??(U) and so the Banach-Alaoglu
theorem implies there exists a subsequence, which we still label as (vy), that converges
weakly to some v € W2P(U). On the other hand, the compact Sobolev embedding implies
that the same subsequence converges strongly to v € LP(U), and hence ||v||z»@y) = 1. Sending

k — oo in (3.23) shows
Lv=0in U.

By the uniqueness assumption, v = 0, but this contradicts with ||v||z») = 1. This completes
the proof. O
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Proposition 3.4. Let p > 1 and assume f € L?(B1(0)). Then the Dirichlet problem

—Au=f in By(0),
{ u=0 on dB(0), (3.24)

has a unique solution u € W*P(By(0)) satisfying

ullw2r (B 0)) < Cllflzeesi0))- (3.25)

Proof. Uniqueness follows by testing the equation against u, integrating over B;(0) then

/ | Du|? dw = 0.
B1(0)

Thus, Du = 0 and so w is constant in B;(0). The boundary condition further implies that

integrating by parts to get

u=0.
Since f is continuous, the existence of solutions follows from the integral representation,

ue) = [ Gle)f)dy. v € Bi(0)
By (0)
where G(x,y) is the Green’s function for the region B;(0). More precisely,

G(r,y) =T(y —z) — ¢"(y)

where I'(z) is the fundamental solution of Laplace’s equation and ¢*(y), when n > 3, is the

corrector function (c.f., (1.48))

" (y) = !

(n —2)w,

It remains to show the W*P estimate for this integral representation of the solution. Of
course, we have already established the estimate for the first part

(lzllz/|zf* — yh)* .

/B T fwdy

since this is just the Newtonian potential of f(x), but we are missing the estimate for the
part involving the corrector function. Instead, we proceed with an approximation argument.
For § > 0 suitably small, consider the ball B;_5(0) and set

us() = / | Gl St dy

where
Fi(@) = { g(aj) if x € B1_4(0),

elsewhere.
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From our earlier result on Newtonian potentials, there holds that D?us belongs to L?(B;(0)).
Thus, by Poincaré’s inequality, us belongs to LP(B;(0)) and hence, to W??(By(0)) as well.
From Lemma [3.4] we have the improved a priori estimate

[us (w2, 0)) < CllfsllLesi(0))-

We may choose a sequence {d;} — 07 so that the corresponding solutions {us,} is a Cauchy
sequence in W2?(B;(0)). This follows since

lus, — us; [lwew (s 0) < Cllfs; — f5;lLe(i0) — 0

as i, j —» 00. Then let uy be the limit point of this Cauchy sequence in W2?(B;(0)). Then
ug € W*P(B;(0)) is a solution of ([3.24) and the improved a priori estimate ([3.25) holds.
This completes the proof.

[

Proof of Theorem 3.9 In view of our comments above, assume that p > 2. Consider the
usual smooth cut-off function

Jo [ ifs<t
P =0 irs>e
Let u € W,?(U) be a weak solution of (3.19). For any zq in Uss := {z € U|dist(x,dU) >

20}, let
|z — x|

n(a) = (5 ) and w(@) = n(e)u(e).

Thus, w is supported in Bas(20). By our definition of a weak solution in W, ?(U), it is easily
verified that for any v € C§°(Bas(x0)),

/ a'l (o) DywDjv d = / [a (z¢) — a" (z)|D;wD;v + F(z)v d,
Bos (o) Bys(xo)

where

F(z) = f(z) — Dj(aij (z)(Din)u) — b (x)Dju — c(z)u.

Namely, w is a weak solution of

—a (o) Dijw = —Dj([a” (o) — a ()] Diw) + F(z)  in Bas(wo), (3.26)
w=0 on 0Bss(x). '
As before, we may assume a(xq) = d;; and we may rewrite (3.26) as
—Aw = — D;([a"(z) — a” (x)]|Diw) + F(x)
= — [a(x9) — a" ()] Dijw + F(x) in Bas(xo), (3.27)
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where
F(z) = D;[a"(2)]Dsw + F(z).

For any v € W??(Bas(z0)), clearly
[a”(z0) — @ (2)]Dijv € LP(Bas(g)).

In addition, it is easy to verify that F' belongs to LP(Bys(x)). In view of Proposition ,
the Laplacian A is an invertible linear operator, and so we may consider the equation

v=Kv+ (=A)'F in W??, (3.28)

where

Kuv(z) := AN ([a" (20) — a”(z)]Dyjv).

From the Lipschitz continuity of a¥(x), K is a contraction mapping from W?2P(Bsys(z¢))
to itself provided that 6 > 0 is sufficiently small. Thus, there exists a unique solution
v € W?P(Bys(xg)) to equation (3.28). By the uniqueness of solutions of (3.27), which
follows from arguments similar to those in the proof of Proposition (3.4, we have that w = v
in W2P(Bys(g)). Therefore, the regularity of u holds locally in a neighborhood of zy € U.
Since zy was chosen arbitrarily and since U is bounded, a standard covering argument yields
the regularity of u up to the entire domain. That is, u belongs to WP (U). O

Remark 3.5. In summary, a priori reqularity estimates imply the actual reqularity of weak
solutions. From this point on, we study the reqularity of solutions in various settings and
function spaces, however, we only establish the a priori estimates. It should be understood
that the actual reqularity of the solutions will follow from the a priori estimates using similar
1deas in this section.

3.3 Bootstraping: Two Basic Examples

We show how to combine the previous W?P a priori estimates with the Holder estimates
of Sections [1.4.2] and [1.4.3| (or more generally the Schauder estimates of Section below)
to get the smoothness of weak solutions to a simple linear PDE and a related semilinear
problem. The goal here is to introduce and provide simple examples of bootstrap methods.

Let n > 3 and suppose U C R” is a bounded open subset with C! boundary. Consider
the linear problem

—Au=c(z)u in U,
{528 o 329
and the semilinear problem
—Au=|ulf'u inT,
{ u=20 on JU. (3.30)
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We shall prove that if u € Hj(U) is a weak solution of either problem, then it is actually
smooth and therefore a classical solution. The idea is to treat each PDE as a linear equation
with an integrable coefficient, then we apply the Sobolev embedding recursively to boost the
smoothness of u and verify it is Holder continuous. The Schauder estimates will then show
w is of class C*®. Similarly, applying the Schauder estimates successively will further imply
that the solution is in fact smooth.

Remark 3.6. This idea of starting with a solution residing in a lower regqularity space and
iterating the a priori estimates to show it actually belongs to a higher regularity space is an
example of a bootstrap procedure. We shall revisit bootstrap arguments again in the subsequent
sections.

Theorem 3.10. Suppose that uw € H}(U) is a weak solution of problem (3.29) and c(x)
belongs to Lz(U). Then u is smooth, i.e., u € C*™.

Proof. By the Sobolev inequality, u belongs to L%(U ). Thus, Holder’s inequality ensures
the source term c¢(z)u belongs to LH%(U), since

Then the L? regularity theory implies u € W2 (U) where s = 2n/(n + 2). Again, the
Sobolev embedding W?2*(U) < L#-2 (U) implies that u belongs to L (U) and thus belongs
to W2s1(U), where s; = nsg/(n — 2sg). If s; > n, Sobolev embedding, particularly Morrey’s
inequality, implies that u belongs to C*(U) where « = 1 —n/s; € (0,1); otherwise, if
s1 < n, we can invoke the L? theory and the Sobolev embedding once again to deduce that
u € W21(U) — L2(U), where sy = ns;/(n — 2s1) = nsg/(n — 4sg). Therefore, if s > n,
we get that u belongs to C*(U) for some a € (0,1) and we are done. Otherwise, we may
repeat this argument successively to find a suitably large j in which s; > n and u belongs to
W25 (U). Hence, Sobolev embedding ensures u € C*(U) for some « € (0,1). By applying
the Schauder estimates repeatedly, we deduce that u is smooth. O

A consequence of this result is the smoothness of weak solutions to problem (3.30]).

Corollary 3.1. Suppose 1 < p < (n+2)/(n—2). Ifu € H}(U) is a weak solution of problem

(3.30), then u is smooth.

Proof. Set c¢(x) = |u[P~!. Since u belongs to Hg(U), the Sobolev inequality implies that
u € L*(U) for 1 < s < 2n/(n—2). From this, it is easy to check that c(x) belongs to Lz (U).
Hence, the previous theorem applies to show u is smooth. O

3.4 Regularity in the Sobolev Spaces H*

In this section, we show the regularity of weak solutions to uniformly elliptic equations in
H?(U) or W2%(U). Under the appropriate conditions, we shall establish both interior and

115



boundary a priori estimates for the weak solutions to conclude that they are indeed strong
solutions. Then, we iterate these estimates under the right conditions to conclude that
the weak solutions belong to higher order Sobolev spaces. In fact, we show weak solutions
are actually classical solutions if the data of the elliptic problem are smooth. We assume
throughout the section that U C R" is a bounded, open set and we take u € H}(U) to be a

weak solution of
Lu=f inU,
u=0 on JU,

where as always L is uniformly elliptic and is in divergence form, i.e.,
ZD x)D;u +Zb’ )Diu + c(x)u.
i,j=1
Of course, the regularity of the coefficients a*, b* and ¢ and the source term f must be

specified for each regularity result.

3.4.1 Interior regularity
Theorem 3.11 (Interior H?-regularity). Assume
a’ € CHU), b, ce L®(U) fori,j=1,2,...,n, (3.31)
and f € L*(U). Suppose further that w € H'(U) is a weak solution of the elliptic PDE
Lu=f i U.

Then u belongs to HE (U) and thus is a strong solution of this elliptic PDE, and for each

open subset V- CC U there holds the estimate

lullm20vy < Cllull2wy + 1 flle2@)), (3.32)
where the positive constant C depends only on V', U and the coefficients of the operator L.

Remark 3.7. Note that this theorem s not assuming u satisfies the Dirichlet boundary
condition on OU. Also, recall that u is said to be a strong solution of the elliptic PDE if it
15 twice weakly differentiable and satisfies the equation Lu = f, for a.e. x in U. Indeed, this
follows simply from the fact that u belongs to HE (U). More precisely, the definition of a
weak solution and integration by parts indicates that

(Lu,v) = Blu,v] = (f,v)

for all v € CX(U). Thus, from Corollary this shows that Lu — f = 0 a.e. or that
Lu=f for a.e. x €U.
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Proof of Theorem |5.11 Fix V CC U, choose an open W such that V CcC W cC U, and
select a smooth cut-off function ¢ such that 0 < (¢ <1,(=1inV and ( =0 in WC.

Step 1: Since u € H'(U) is a weak solution of Lu = f in U, there holds

Z/ z)DyuDjvdx = / Fvdz for every v € Hy(U), (3.33)
U

i,7=1

where

F:=f- Zb’ Diu — c(z)u.

Step 2: Let |h| > 0 be small, choose k € {1,2,...,n} and substitute
v= =D D}
into (3.33]) where Dl'u is the difference quotient

Ditu(a) = " he}’z) —u) (1, e R\{0)).

For this particular test function v, we denote the resulting left-hand side (respectively, right-
hand side) of (3.33) by A (respectively, B). After some tedious calculations and denoting
v"(z) := v(x + hey,), we calculate

A= Z/ iah( DZDuDkDuC2d$+Z/ [a""(2) D DiuD'u(2¢) D¢

,j=1 1,j=1
+(Dya” () DiuDy Dju¢? + (Dya” (x)) DiuDyu(2¢) D;C) dz
= Al + AQ.

Indeed, the uniform ellipticity condition implies
A > 9/ ¢} D Dul? du.
U
In addition, from (3.31)) we get
42| <€ [ (IDLDulD}ul + ¢ DLDul|Du + ¢|Djul| D da,
U
for some constant C' > 0. Thus, Cauchy’s inequality with € (see Theorem |[A.1)) implies the

estimate

C
|As] < e/ C?| D} Dul? da + —/ |Djtul? + | Dul? dz.
U € Jw
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Choosing € = #/2 and using the fact that

/ |DZu|2dx§C’/ | Dul? d,
w U

0
|Ay| < 5/g2|D,’;Du|2d:chc/ | Dul|? dz.
U U

we arrive at

This estimate and the estimate of A; imply
0
A> —/ ¢} DI Dul? da — 0/ | Dul* da. (3.34)
2 Jy U
Recalling the definition of F' and our particular choice of the test function v, we get
BI <C [ (14 |Dul + fuo] dz
U
C
< e/ C?| Dy Dul? dx + —/ 24+ v + |Dul* dx
U € Ju
where we used Cauchy’s inequality with ¢ (Theorem [A.1)) and the fact that
/ lv]? dx < C/ |Du|? 4 2| D} Dul* dz.
U U
Choosing € = 0/4, we arrive at
6
Bl < § [ CIDEDUPdr+C [ P+ 1D de < COa + i) (335)
Recalling that A = B and inserting the estimates (3.34]) and (3.35)), we deduce that

/ | D} Dul|? da < / C?| Dy Dul? do < C/ 24+ v + |Dul* dx
|4 U U

for k = 1,2,...,n, and all sufficiently small |h| # 0. This implies that Du € H. _(U;R").
Hence, we have that u € H2_(U) with the estimate
lullm2evy < O f 2wy + lull@))- (3.36)

Step 3: Notice that we are not quite done; namely, it remains to replace the H' norm of u
instead with its L? norm in the estimate ([3.36]).

Indeed, since V. CC W CC U, the procedure above can be used to establish the interior
estimate

|l g2y < CUf N 2owy + [Jull g owy) (3.37)
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for an appropriate positive constant C' depending on V', W, etc. Choosing a new smooth
cut-off function 0 < ¢ < 1 with ¢ = 1 in W, supp(¢) C U and setting v = ¢? in identity
(3.33), elementary calculations will lead to the estimate

/ C?|Dul? dx < C’/ f*+u*da.
U U
Hence,
lullzrory < CUfllezy + lullzzw),
and inserting this into completes the proof of the theorem. O

3.4.2 Higher interior regularity

By assuming stronger smoothness of the coefficients in the elliptic equation, we may iter-
ate the previous interior regularity theorem to get the higher regularity of weak solutions.
Namely, there holds the following.

Theorem 3.12 (Higher interior regularity). Let m be a non-negative integer, and assume
a’, b, ce C™YU) for i,j=1,2,...,n,

and

fe H™(U).
Suppose further that uw € HY(U) is a weak solution of the elliptic PDE
Lu=f i U.

Then
u belongs to H™*(U), (3.38)

loc

and for each open subset V- CC U there holds the estimate

ull mr2 vy < C(llull 2wy + 1 f 1 zm @), (3.39)

where the positive constant C' depends only on m, V, U and the coefficients of the elliptic
operator L.

Proof. We proceed by induction. Clearly, the case m = 0 holds by Theorem [3.11}
Step 1: Assume that assertions (3.38]) and (3.39)) hold for an arbitrary integer m > 2 and
all open sets U, coefficients a¥, b, ¢, etc. Now suppose

a’, b, ce C™2(U), (3.40)

and
fe H™YU), (3.41)
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and u € H'(U) is a weak solution of Lu = f in U.
So by the induction hypothesis, there holds u € H;"-"*(U) with the interior estimate

loc

Jull oszpry < CUL @y + ullr2@) (3.42)

for each W CC U and an appropriate positive constant C, depending only on W, the
coeflicients of L, etc. Now fix V CcC W CcC U.

Step 2: Now let a be any multi-index with |a] = m + 1, and choose any test function v; €
C(W). Inserting v := (—1)I*/D%; into the weak solution definition Blu,v] = (f,v)r2w),
elementary calculations will lead to the identity

Blur, vi] = (fi,v1) 20 (3.43)

where
uy := D € H'(W) (3.44)

and
fi=D%f - Y (g) [— Zn: D, (Da—ﬁaiﬂ' (x)D’BDiu>
BLa,B#a ,7=1
+3° D" (2) D’ Dyu + Da’ﬁc(x)DBu] . (3.45)
=1

Since (3.43)) holds for each v, € C° (W), we see that u; is a weak solution of Lu = f; in W.
So in view of (3.40)—(3.42) and (3.44)), we have f; € L*(U) with

I fillzowy < CUfllamerwy + lullL2@))-

Step 3: From Theorem [3.11] we conclude that u; belongs to H%(V) with the estimate

url|z2evy < CUfllzowy + uallzony) < CULf lamer @y + lullzzwy)-

Since this estimate holds for each multi-index a with || = m + 1 and u; = D%u, we deduce
that w € H™3(V) and

ul| mrs vy < C(flamer @y + 1wl L2@))-

This completes the induction step for the case m + 1, and this finishes the proof of the
theorem. ]

In fact, provided that the data of the problem are smooth, we can apply Theorem [3.12
successively to deduce that the weak solutions are actually smooth.
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Theorem 3.13 (Infinite differentiability in the interior). Assume
a’, b, ce C°(U) fori,j=1,2,...,n

and

fec=().
Suppose further that uw € HY(U) is a weak solution of the elliptic PDE

Lu=f w U.
Then u belongs to C*(U).

Proof. According to Theorem u belongs to H]".(U) for each integer m = 1,2,.... So

by the general Sobolev inqualities (see Theorem [A.17)), u belongs to C*(U) for k = 1,2, ....
This completes the proof. O

3.4.3 Global regularity

Next, we extend the earlier interior regularity estimates up to the boundary, but not sur-
prisingly, additional smoothness up to the boundary 0U on the data of the problem are
needed.

Theorem 3.14 (Boundary H?-regularity). Assume
a’ € CYU), b, ce L(U) fori,j=1,2,...,n, (3.46)
f € L*(U) and the boundary OU is C*. Suppose that u € H}(U) is a weak solution of the

boundary-value problem
Lu=f inU,
{ u=0 ondU. (3.47)

Then u € H*(U), and there holds the estimate

[ull 2wy < Cllull2@w) + 112 @), (3.48)
where the positive constant C depends only on U and the coefficients of L.

Remark 3.8. Note that we are now prescribing a Dirichlet boundary condition on the solu-
tion of . This boundary condition, of course, should be understood in the trace sense.
In addition, if u is the unique weak solution of the Dirichlet problem, then estimate
simplifies to

[ull 2wy < Cllf 2
since Theorem implies that ||u|| 2@y < C’||f||L2(U) where C' depends only on U and the
coefficients of L.
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Proof of Theorem[3.1]]. We first prove the theorem for the special case when U is the half-
ball
U= DB(0)NRY.

Step 1: Set V = Bl/g(O) N R} and select a smooth cut-off function ¢ for which 0 < ¢ <1,
¢ =1 in Byj(0), and ¢ = 0 in B;(0)°. In particular, ( = 1 in V and vanishes near the
curved part of OU. Since u is a weak solution of (3.47)), we have that

Blu,v] = (f,v) for all v € Hy(U),

and so
n

Z/aij(x)DiuDjvdx:/dex, (3.49)
U

ij=1 v

where .
Fi=f- Z b'(x) Diu — c(z)u.
i=1
Step 2: Now let 4 > 0 be small, choose k € {1,2,...,n — 1} and write
v = —D (D).

Note that
I
v(@) = = 2D (@)[ulr + hey) — u()])
1
= (CQ(x — hey)[u(z) — u(z — hey)] — C(z)[u(z + heg) — u(x)]) (x € U).

Then, since u = 0 along {x,, = 0} in the trace sense and ¢ = 0 near the curved portion of
U, we get that v € Hj(U). Then, substituting this particular choice of v into (3.49)), we
may write the resulting expression as A = B where

A=) / a" (z) DyuDjv dz (3.50)
ij=17U
and
B::/dex. (3.51)
U

Step 3: We estimate the terms A and B, but the steps are similar to the steps found in the
proof of Theorem so we omit the details. Namely, there holds

0
A> 5/ C?| D} Dul? da — C/ | Du|? dz (3.52)
U U

and
0
Bl < [ CIDiDuPda+C [ £t il 4| Du e (3.53)
U U
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for an appropriate positive constant C. Inserting estimates and ( into the ex-
pression A = B, we deduce

/ |DI'Dul* do < C/ 2+ u*|Dul? dx
% U
for k=1,2,...,n— 1. Thus, this implies that

Dyu € HY(V) for k=1,2,...,n—1

with the estimate

n

S IDaulzz < Clllulsw) + 1fllzw): (3.54)

k0=1,k+0<2n

Step 4: Notice that estimate (3.54)) is missing the last term || Dy, L2(y. We now estimate
this term.
In view of Theorem and the definition of the elliptic operator L, u is a strong solution

of Lu= f in V. That is,

—Z DuDu+Zb’ )Diu+ c(z)u = f (3.55)
3,0=1 =1
where b(z) == b'(x) — > i1 Dja"(x) for i = 1,2,...,n. From this we can solve for the last
term D,,u, i.e.,
a"(@)Dpu = — Y ) Dyju + Z b'(z)Diu+ c(z) — f. (3.56)
ij=1,i+j<2n

From the uniform ellipticity condition, ZZ]’:1 a¥(x)&&; > 0|¢)? for all x € U, € € R™. Thus,
if we take £ = e, = (0,0,...,0,1) in the last estimate, we get

a"(z)>6>0 in U. (3.57)

Hence, combining this and the assumptions (3.46)) with identity (3.56)) gives us

| Dyntt]| < (J( N IDyul + [Dul + Jul + |f|> in U. (3.58)
ij=1,i+j<2n
Therefore, applying estimate (3.54]) to this, we arrive at the estimate
lullg2vy < Clull 2wy + 1 fll2@w)) (3.59)

for some appropriate positive constant C.
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Step 5: We drop the assumption that U is a half-ball. In general, we may choose any point
2° € OU and since OU is C?, we may assume, upon relabelling and reorienting the axes if

necessary, that
UNB.(2°) = {z € B.(2°) | 7p > (71, 72,...,201)}

for some r > 0 and some C? function v : R""! — R. As indicated at the beginning of this
chapter, we can change variables and write

y=®(x) and x = U(y).

Step 6: Choose s > 0 so small that the half-ball U; = B,(0)N{y, > 0} lies in ®(UN B, (z)).
Set
Vi = Bya(0) 0 g > 0} (3.60)

and define
ur(y) = u(¥(y)) for y € Us.

Then it turns out that
(1) uy € HY (1), (ii) uy = 0 on OU; N {y, = 0} (3.61)

where property (i7) should be understood in the trace sense. Then, after some elementary
calculations, we can deduce that this u; is a weak solution of the PDE

Liu= f; in Up
where
fily) = f(¥(y))
and . .
Liu=— Z Dy(a¥* Dyuy ) + Z Ve (x) Dy + c1(c)u
kt=1 k=1
with

Then, it turns out that L; is a uniformly elliptic operator and the matrix coefficient a‘(x)
is O since ® and ¥ are C? maps.
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Step 7: Applying our results from Steps 1-4 to the elliptic problem Liu = f; in U; and
recalling (3.60), we deduce that u; € H*(V;) with the estimate

Nl g2y < Cllurllz2yy + 1 f1llz2ny)s

and so

[ull 2oy < Clllullz2w) + 11 flz2wy) (3.62)
for V.= ¥(1}).
Step 8: Finally, since QU is compact, we can cover it with finitely many sets Vi, V5, ..., Vy

as above in which the estimate holds in each V;. Summing up these estimates over
all V; and combining the resulting estimate with the interior regularity estimate shows that
u € H*(U) with

[ull 2wy < Clllull2wy + 1 2 @))-
This completes the proof of the theorem. O

3.4.4 Higher global regularity

Theorem 3.15 (Higher boundary regularity). Let m be a non-negative integer, and assume

al,b',ce C"NO) for i, j=1,2,...,m, (3.63)

feH™(U) (3.64)

and the boundary OU is C™ 2. Suppose that uw € HY(U) is a weak solution of the boundary-
value problem

Lu=f inU,
u=0 ondU.

Then u € H™2(U), and there holds the estimate

ull iz @y < Cl|ullz2@wy + 1 flam @), (3.65)

where the positive constant C depends only on m, U and the coefficients of the elliptic
operator L.

Proof. We only prove the boundary estimate for the special case when the domain is the
half-ball U = B,(0) NR"} for some s > 0. Proving it for a general domain U involves similar
ideas as in the preceding theorem by straightening out the boundary and applying a standard
covering argument.

Fix t € (0,s) and set V = B,(0) N RY.
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Step 1: We proceed by induction on the non-negative integer m with the goal of showing
that (3.63)) and (3.64), whenever u = 0 along {x,, = 0} in the trace sense, imply u € H™ (V)

with the estimate
ull grmzry < C(||ull ey + 1 £l 22r),

for some positive constant C' depending only on U, V' and the coefficients of the operator L.
Of course, the case m = 0 is a direct consequence of the preceding theorem.
Suppose then that

(i) a”, b, c € C"™T2(U), (i) f € H™(U), (3.66)

u 1s a weak solution of

Lu= f in U,

and u vanishes along {x, = 0} in the trace sense. Fix any 0 < ¢t < r < s and write
W = B,(0) NR’. By the induction assumption, we have u € H™ (W) with

[ull mszwy < Cllull2wy + 1 Fllmwy)- (3.67)

Furthermore, according to the interior regularity result of Theorem [3.12) u € H ().

loc

Step 2: Let a be any multi-index with || = m+1 and «,, = 0. Then set u; := D%u, which
belongs to H'(U) and vanishes along the plane {z, = 0} in the trace sense. Furthermore,
as in the proof of Theorem [3.12, u; is a weak solution of

Llu = f17
where
fi:=Df — Z (a) [ i —(Da_ﬂaij (x)DﬂDiu>
B<a, BF#a b i,j=1

+ Z DA (2)DP Dyu + DQ_BC(I')D’BU} :
i=1

So in view of (3.63)), (3.64), (3.66)(ii) and (3.67), we see that f; € L*(W) with

Lfllzzgwy < Cllullzzw) + [ Fllamw))-

From our proof of Theorem [3.14] we can deduce that u; € H*(V) with

[urlla2vy < Cllluallzzowy + Lfillzzowy) < CUlullzzwy + [ 1ame @)

Noting that u; = D%u, this shows that
IDPul 2y < Cllull 2wy + 1l @)
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for any multi-index 8 with || =m + 3 and 3, = 0,1, or 2.

Step 3: We only need to remove the previous restriction on (,, and we do so by induction.
Namely, assume that

1D ull2vy < Cllullzwy + 1f s wy)

for any multi-index 8 with |f| =m+3 and 8, =0,1,2,...,7 for some j € {2,3,..., m+2}.
Assume then || = m + 3, 8, = j+ 1. Let us write § = v+ ¢ for § = (0,...,0,2) and
|| = m + 1. Since, u € H*(U) and Lu = f in U, we have DYLu = D7 f a.e. in U. Now,
DYLu = a™(x)DPu+ T where T is a sum of terms involving at most j derivatives of u with
respect to x,, and at most m + 3 derivatives with respect to all the other variables. Since

a™(x) > 6 > 0in U, the initial induction hypothesis imply that

1D ul|20vy < C(||ull 2@y + || ]

Hm+1 (U) )

provided that |5 = m + 3 and 3, = j + 1. So by induction, we have

[ull zmeary < Cllull2@y + L f[ame@)-
This completes the proof. O

We have a global smoothness property of weak solutions to the Dirichlet problem provided
the data are globally smooth.

Theorem 3.16 (Infinite differentiability up to the boundary). Assume

a’, b’ ce C°(U) fori,j=1,2,...,n,

f € C=(U) and the boundary U is C*°. Suppose that u € Hy(U) is a weak solution of the
boundary-value problem

Lu=f inU,
u=0 ondU.

Then u € C*(U).

Proof. According to Theorem [3.15] we have u € H™(U) for each integer m = 1,2, .... Thus,
Theorem implies that u belongs to C*(U) for each k = 1,2,.... This completes the
proof of the theorem. O

3.5 The Schauder Estimates and C** Regularity

This section briefly recalls results from the Schauder theory for classical solutions. The
proofs of the interior and global estimates can be found in [6].

127



Let U CR", x5 € U and « € (0,1]. We denote by C*(U) = C*%(U) the Banach space of
functions f which are k-times continuously differentiable on U equipped with the norm

k

I£llkw =" [fliw: (3.68)

J=0

where [f];. := supy | D? f(z)].
For Holder continuity, we introduce the corresponding class of spaces often called Holder
spaces. We say a function f is Holder continuous with exponent o at z if the quantity

|f(x) = ()|

a.ze -= SU
[f] »L0 Up ‘x_mo‘a

is finite. Furthermore, if « = 1, then f is said to be Lipschitz continuous at zy,. We say f is
Holder continuous with exponent « in U if

[flasw == sup M

z,yeUz#ty |z —yl*

is finite. For a € (0, 1], we introduce the additional semi-norms
floow = flow := sup | f ()],
[floasv = [flaw == sup [fla,z,

[flreov = [flev = Z [D° flow,
|8|=k
[f]k,a;U = Z [Dﬁf]a;U-

|B|=k

Definition 3.5. We denote by C**(U) (0 < o < 1) the space consisting of functions
f € CHU) satisfying [flr.av < 0o. This space is indeed a Banach space equipped with the
norm

I f ke == I f v + [flkas (3.69)

Let U be an bounded open domain and consider the general second-order linear elliptic

equation

As usual, we assume there exist 0 < A < A such that
MEP < a(2)&€ < AEJ? for all x € U, € € R™,

a’ b',ce C*U) (0 <a<1)and
1 i
A 10 e+ 3 W + el } < Ao
v %
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Theorem 3.17 (Interior Schauder estimates). For a € (0,1), let u € C**(U) be a solution
of (3.70). Then for U' CC U, we have

1
fullangr <€ (51 low + o).

where C' depends only on n,a, AJX, A, and dist(U’,0U).

Following similar ideas used in obtaining the interior estimates, we can establish corre-
sponding boundary Schauder estimates.

Theorem 3.18 (Global Schauder estimates). Consider the same assumptions from the pre-
vious theorem and further assume OU € C%*“. Suppose that u € C**(U) is a solution of
(3.70) satisfying the boundary condition u = g on OU where g € C**(U). Then

1
||u||27oc;U <C (XHfHOuU + ||g||2,oc;U + ||U||0;U) )

where C' depends only on n,a, /X, A, and U. Moreover, if u satisfies the mazximum princi-
ple, then the last term on the right-hand side of the global estimate can be dropped.

3.6 Holder Continuity for Weak Solutions: A Pertur-
bation Approach

In this section, we prove the classical Holder estimates for second-order elliptic equations
using a perturbation approach. For the sake of simplicity, we consider the Dirichlet boundary

Lu=f inU,
i 37

value problem

where

Lu=— Z Dj (a”(z)D;u) + c(z)u.

ij=1
Recall that u € Hj(U) is a weak solution of (3.71]) if
/ a’(z)DyuD;p + c(z)up dr = / f(z)pdx for all ¢ € Hy(U).
U U
As before, we assume L is uniformly elliptic, a¥ € L>®(U), the coefficient ¢ € L2 (U), and
f e LH%(U ). Note that the assumptions on ¢ and f and the Sobolev embedding allows

for the weak solution definition to make sense. Now, the proper space to study the Holder
regularity properties in this perturbation framework are the Morrey and Campanato spaces.
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3.6.1 Morrey—Campanato Spaces

Here, we shall provide the definitions and basic properties of certain subspaces of LP spaces—
the Morrey and Campanato spaces. These function spaces allow us to generalize the Sobolev
inequalities and provide the proper setting for studying the Holder regularity of weak solu-
tions to elliptic equations. As usual, we let U C R™ be open (not necessarily bounded) and
let U,(z) := B.(z)NU.

Definition 3.6 (Morrey Space). Let 1 < p < oo and X\ > 0. The Morrey space MP*(U) is
defined as

MPANU) = {fELp(U)‘/ |fIPdz < CP 1™ for any xDEU,r>O}
r(z0)

with norm

1 1/p
[ fllazrrwy = ( sup  — | fIP da:) .

zo€Ur>0 7" J U, (z0)

Proposition 3.5. Let 1 <p < oo and A > 0. Then
(i) MP*U) is a Banach space,

(i) MPO(U) = I/(U),

(i) MP"(U) = L>(U),

(iv) If ¢ > p then LY(U) — MPMU) for A = \(p,q).

Definition 3.7 (Type A domains). A domain U is of type A if there exists a constant A > 0
such that for any xo € U and 0 < r < diam(U), |U,(zo)| > A - ™.

Definition 3.8 (Campanato Space). Let 1 < p < oo and X > 0. The Campanato space
LPANU) is defined as

L) = { f € D(U) | [l < o0}

where the Campanato seminorm is given by

1 1/p
fleeaw) ¢=< sup  — If—(f)m,r|”dx) .

A
xoeU,r>0 r Ur(x0)

Remark 3.9. Indeed, the quantity [f]i»xqy s a seminorm as any constant function f
satisfies [f]ppary = 0.

Proposition 3.6. Let 1 < p < oo and A > 0. Then

(i) If U is of type A and 0 < X\ < n, then MPNU) = LPA(U),
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(ii) If \=n and p =1, then L"(U) = BMO(U) for any U,

(i) If X > n + p, then for any U and any p, LPU) is trivial in that it only contains
constant functions.

Remark 3.10. To summarize, the Morrey and Campanato spaces are indistinguishable in
the range A\ € (0,n). In the endpoint case p = 1 and A = n, the Campanato space reduces
to the space BMO, which is larger and properly contains the space L>*°(U) = MP™(U). In
the interval X € (n,n + p| we shall see that the Campanato spaces are indistinguishable from
the Holder and Lipschitz spaces, and this is precisely the setting for studying the Holder
reqularity of weak solutions to elliptic equations. Of course, when A > n+p, the Campanato
spaces (just as with the C*(U) spaces when o > 1) are trivial consisting of only the constant
functions.

We start with the following important embedding property.

Theorem 3.19 (Sobolev—Morrey Embedding). Let U C R™ be of type A, 1 < p < oo and
€ (0,1). Ifu e W'(U) such that Du € LP"P™P(U), then u € C*(U).

Notice that this is a generalization of Morrey’s inequality and Theorem that is,
we recover Theorem from this if p > n and « =1 —n/p (or n — p + pa = 0). Now
to prove Theorem [3.19] we will need the next result, which indicates that the Campanato
space LPA(U) is equivalent to the Holder space C*(U) for 1 < p < oo and A\ = n + pa
with a € (0,1). Indeed, this illustrates an important application of the Morrey-Campanato
spaces when studying the Holder regularity of weak solutions to elliptic equations.

Theorem 3.20. Suppose the domain U C R™ is of type A and let o € (0,1), then
LPr(U) = C(U).
Proof. First, we prove that C*(U) < LP"™P*(U). Observe that

1 (0%
)= Dol < [y [, V@) =~ Sy < O flenc

Thus,

1 1
i [, ) = Pt < i [ 10 = 100+ ) = (Dol

< - C /Br(xo) (M 4 [f]CD‘(U))p|1] P

prtpa |z — zo|®
C[f1P
<o [y
r Br(z0)

. " dt
S C[f]%a(U)r Pa/o tn-l—poz?

< C[f]%a(U)-
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This implies that
HfHLP*”ﬂ’a(U) < CHcha(U),

and so f € LP"P(U) whenever f € C*(U), i.e., C*(U) < LP"P*(U). Hence, it only
remains to prove that L () — C*(U). For simplicity we only give the proof of this for
the case p = 2 (see Theorem below), since our Holder regularity results only considers
weak solutions belonging to H'(U) = W'P=2(U). O

Proof of Theorem [3.19. This clearly follows from Theorem |3.20| and Poincaré’s inequality.
O

3.6.2 Preliminary Estimates
The following basically states and proves special cases of Theorems and [3.20]

Theorem 3.21. Suppose u € L*(U) satisfies
/ U — Uy, |? de < M*r" 2 for any B,(x) C U
By (x)

for some a € (0,1). Then u € C*(U) and for any U' CC U there holds
(0,1)

lullca@wn < C(M + [ul|2),

where C'= C(n,a,U",U) and ||ullcewr) :=sup |u[ +  sup Julz) = uly)|
v’ z,yel’, z#y |z —y|*

Proof. Uniform Estimate: Denote Ry = dist(U’,0U). For any xy € U and 0 < 1y < 1y <
Ry, we have

’uwoﬂ"l - uwo#2‘2 (\u(x) - uﬂcoﬂ"ll + ‘u<x) - uwoﬂ"2|>2
\u(:c) - uwoﬂ"1|2 + 2|u(:1:') - uivo,mHu(x) - uxoﬂ“z’ + |u(a:') - uivo#z’Q

2( u(:r;) - uonJ‘l’Q + |u(:c) - uxo,ﬁ’Q)’

VARVARNVAN

where we applied Young’s inequality: 2ab < a?+0b? for a,b € R. Integrating this with respect
to x in B,,(xg) yields

w
2 n . n __
’uivoﬂ“l - uﬂﬂoﬂ"z' ’ ;Tl - 2{/

lu — umo,m\z dx},
B'fl (IO)

|t — Usg ]2 dx + /

B?"Q (Io)

from which the estimate
(O—— ugm,m|2 < C’(n)MQTf" (7“{”2“ + r§+20‘) (3.72)
follows. For any R < Ry, with 1 = R/2""! ry = R/2!, we obtain

< C(n)2-HaprRe,

‘u1072*(i+1)R — Ugy2—iR
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Thus, for any h < k,

k—h—1
C(n) a —ia C(’I’L, a) ot
|uzo,2*hR - u$0,2*kR| < 2(h+1)a MR z : 2 < oha MR
=0

This shows that {u,,»-ig} C R is a Cauchy sequence, and therefore convergent whose limit
u(zo) is independent of the choice of R, since (3.72) can be applied with r, = 27°R and
ro = 27'R whenever 0 < R < R < Ry. Thus, we obtain

(o) = rli_II)lo Uzgr aNd |ty — u(xg)| < C(n)Mr® (3.73)

for any 0 < r < Ry. Recall that by Lebesgue’s differentiation theorem, {u,,} converges to
win LY(U) as r — 0, so we have u = @ a.e. and the inequality in implies {u,,}
converges uniformly to u(z) in U’. Moreover, since & — u,, is continuous for any r > 0,
u(x) is continuous. Again, by the estimate in (3.73)), we get

lu(x)] < CMR® + |uy gl
for any z € U" and R < Ry. Hence, u is bounded in U’ where
HuHLoo(U/) <C (MRg + ||u||L2(U)) .
Holder Estimate: Let x,y € U’ with R = |z — y| < Ry/2. Then we have

u(@) —w(y)] < |u() = we2r] + [w(y) = uy2r] + [te2r — Uy 2r]

The first two terms are estimated by the inequality in (3.73]). For the last term, we rewrite
it
Uz 2r — Uy 2r| < [uzar — u(Q)] + |uy2r — u(C)],

and integrating with respect to ¢ over Byg(x) N Bagr(y), which contains Bgr(z), yields

2
o= wyanl? < T2 { [ el [ = wgand)
Y ‘BR('I)' Bar(x) Bar(y) !

< C(n,a)M?R*.

Hence,
lu(@) — u(y)| < C(n, ) M|z —y|*.

For |z — y| > Ry/2 we obtain

1
ule) = u(y)| < 2l < O{M + ollulls ple —yI*
0

This completes the proof. O
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As remarked earlier, a consequence of this result is a special case of Theorem

Corollary 3.2. Suppose u € H}. (U) satisfies
/ |Dul? dx < M?*r"=2T2* for any B,(x) C U
By ()

for some a € (0,1). Then v € C*(U) and for any U' CC U there holds
[ullcowry < CM +[lul|2),
where C' = C(n, o, U, U)

Proof. From Poincaré’s inequality, we have

/ | — U, | dz < C(n)rQ/ |Dul? dz < C, M2y +2e,
BT(JL’) BT(CE)

and the result follows immediately from the previous theorem. O]

3.6.3 Holder Continuity of Weak Solutions

First, we state two lemmas, which are key to establishing the Hdélder continuity of weak
solutions. The estimates in the resulting regularity theorems in this section are sometimes
called Cordes-Nirenberg type estimates.

Lemma 3.5. Let o(t) be a non-negative and non-decreasing function on [0, R]. Suppose that

o(p) < A{ <§>a + e}gp(r) + Brf for any 0 < p<r <R, (3.74)

where A, B, «a, 8 are non-negative constants and f < «. Then, for any v € (5, «), there
exists a constant ey = €g(A, o, 5,7) such that if € < €y, we have for all0 < p <r <R

p(p) < C{ (g)7 (1) + Bpﬁ},

where C' = C(A,a, B,7) > 0. In particular, we have for any 0 < r < R,

Proof. For 7 € (0,1) and r € (0, R), we rewrite (3.74]) as
o(tr) <71+ e ) p(r) + Br”.

Choosing 7 so that 2A7% = 77 and assuming €7~ < 1, we get

o(tr) < 77p(r) + Br? for each r < R.
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Iterating this for all positive integers k, we obtain

k
@(Tk—i—lr) < va(Tk:T) + BrkByB < T(k“”ga(r) + BrkByB ZTj(v—ﬁ)
=0
BrkByB
(b+1)y =
<7 <p(7“)—|—1_7_7_6.

From this, we choose k so that 7"*%r < p < 757!y and we arrive at

olp) < = (5))790(7’) + TQB(B—pB

T \r 1—77-8)

Lemma 3.6. Suppose u € H'(U) satisfies
/ |Dul?® dz < Mr* for any B,.(xo) C U,
By (o)

for some p € [0,n). Then for any U' CC U there holds for any B,(xy) C U with xy € U’

/ lu|? de < C(n, \, u, U, U") (M—i—/ \u\de) ™,
By (o) U

where \=p+2if u<n—2and X € [0,n) ifn —2 < p<n.

Proof. From Poincaré’s inequality,

/ U — Ugy ,|* dr < Cr2/ |Dul? dz < c(n)Mr#+?
Br(zo)

Br(xo)

for any o € U’ and 0 < r < Ry := dist(U’,0U). Hence,

/ U — Ugy o |* dz < c(n) M1
By (z0)

where A is as stated in the lemma. Then for any Op < r < Ry, we have

/ u?de < 2/
Bp(a“O) By

< c(n)p”|u$07T|2 + 2/ |u — um’,ﬂ|2 dx
By (zo)

< c(n)<£>n/ u® dx + M,
Br(xo)

\uzo,r|2dx+2/ U — Uy | da
(zo) By (o)

r
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where we used [u, |2 < <2 / By (z0) u? dz. Indeed, it follows that o(r) = [ (20) u? dx satisfies

T

o(p) < ¢(n) [(g) o(r) + Mr’\} for any 0 < p <r < Ry.

Therefore, Lemma 3.5/ implies that for any 0 < p < r < Ry,

A
/ u2dx§c[(£> / u2d:v+Mp’\].
By (z0) r By (z0)

In particular, if » = Ry,

/ uzdxgcp)‘(M—i—/lﬂdx) for 0 < p < Ry.
By (o) U

]

To best illustrate the main ideas in the Holder continuity of weak solutions, we assume
that U = Bl = Bl(O)

Theorem 3.22. Let u € H'(By) be a weak solution of (3.71). Assume a € C(By), ¢ €
L"(By), and f € LY(By) for some q € (n/2,n). Then u € C*(By) witha =2—n/q € (0,1).
Moreover, there exists an Ry = Ro(\, A, 7, ||c|[zr) such that for any x € Byjs and r < Ry,
there holds

[, 1wt e < 022 (U + oy
where C'= C(A\, A, 7, ||c||zn) is a positive constant with
|0 (x) — a(y)| < 7lw —y| for any x,y € By
Remark 3.11. In the case where ¢ = 0, we may replace |[u| g1 (g, with [|[Dul|r2p,)-

The main idea in the proof is to compare the solution with harmonic functions and use
a perturbation argument. So we rely on the previous estimates and comparison results on
harmonic functions.

Lemma 3.7 (Basic Estimates for Harmonic Functions). Suppose {a*} is a constant positive
definite matrix satisfying the uniformly elliptic condition,

MEP? < a’&&; < A[EP? for any € € R®

for some 0 < A < A. Suppose w € H*(B,(x0)) is a weak solution of D;(a"(x)Djw) = 0 in
B,.(xo). Then for any 0 < p <r, there hold

/ |Dw|*dz < C <£> / | Dw|? dz,
By (o) r By (x0)

n+2
/ | Dw — (Dw)ww|2 de < C <£> / | Dw — (Dw)zm,,|2 dz,
By (o) By (z0)

r

where C'= C(\,A).
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Proof. This follows from Lemma with u replaced by Dw instead. O]

Lemma 3.8 (Comparison with Harmonic Functions). Suppose w is as in the previous lemma.
Then for any v € H}(B,(zo)) there hold for any 0 < p <,

/ [Duf?dz < ¢{ (3)"/ |Du|2da:+/ D(u—w)Pdz},
B, (zo) r By (z0) Br(z0)

n+2
/ D= (Du)y 2z < { (£) / yDu_(Du)m,rEdH/ D(u—w)?dx},
Bp(xo) r BT(IO) Br(ﬂfo)
where C'= C(\, ).

Proof. We prove this by directly by simple computations. With v = u — w we have that for
any 0 < p <,

/ | Du|? dz < 2/ |Dw[2dx+2/ | Dv|? da

Bp(ffo) Bp(xO) Bﬂ(xO)

C(/—)> / |Dw\2da:+2/ |Dol? dz
r By (x0)

By (o)

C <£>n /BT(xO) | Du|? d + C’{l + (g)n } /Br(xo) |Dv|? dz,

IN

IN

and

/ \Du— (Du), P dr < 2/ D — (Dw),, | dz + 2/ \Dof? da
Bp(zo) By (z0)

Bp(Z’O)

< 4/ | Dw — (Dw)xoy,,|2dx—|—6/ | Dv|* dw
Bﬂ(mo)

BP(IO)

p n+2 9 9
(—> / |Dw — (Dw)y, | dz + 6/ | Dv|* dx
r Br(zo0) B (

z0)
n+2
C <B> / |Du — (D), | do
By (z0)

.
+o{1+ <§>n+2 } /Bmo) | Dv|? da.

]

IN
Q

IN

Proof of Theorem[3.29. We decompose v into a sum v + w where w satisfies a homogeneous
equation and v has estimates in terms of non-homogeneous terms.
For any B,(zg) C Bi, write the equation as

/ a" (o) DjuDjp dr = fo —cup + (a”(zq) — aij(l’))Dz‘UDj‘P dx.
Bl Bl
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In B,(zg), the Dirichlet problem,
/ a’(zo)DywDjpdx =0 for any ¢ € Hy(B,(x0))
BT(J»’O)

has a unique weak solution in H}(B,(z¢)) and u — w € H}(B,(x¢)). Clearly, v = u — w
belongs in HJ (B, (o)) and satisfies

/ aij(l’o)DiUDjSO dr = fo —cup+ (aij(gco) — aij(:c))Diungo dx (3.75)
B

B

for any p € Hj(B,(z)). By taking the test function ¢ = v, we have the following estimates
on each term in the right-hand side of (3.75)):

2n 71’272’2 2n TLQT
/ fode < (/ fn+2dx> (/ |v]n—2das)
BT(IO) BT(-'EO) Br(fﬂo)

n+2

s :
< (/ fn2T2 da:) (/ |Dv[2 d.iE) ,
By (o) Br(z0)

n—1
/ cuvdx < (/ |e|™ d:z:) (/ Juw| 7T dx)
By (o) By (o) Br(z0)

1 1
D 3 N T
(e () (Lo
By (z0) Br(z0) By (o)
: ; ;
< (/ |c|"dx) (/ |u|2dx) (/ | Dvl? dx) )
Br(z0) By (z0) By (o)

1 n—2
.. .. 2 2n 2
/ (a”(x) — a”(x))DiuDjvdr < 7(r)? (/ | Dul? dm) (/ |v|n—2 dx)
By (z0) By (z0) Br(zo)

1 1
< ()2 (/ ]Du\2d:c) (/ ymy?m) ,
Br(l'()) Bv‘(xo)

where we used Holder’s inequality and the Sobolev embedding theorem. From the uniform
ellipticity condition, we estimate the terms in (3.75)) by using the previous three estimates
then divide both sides of the inequality by ||Dv|| 125, (z0)) to get

/ | Dv|? d
Br(a?O)

2/n nT-&-Q
<C T(T)Z/ Duf? do + (/ |c\”dx) / luf? dz + (/ \f\f&) |
By (z0) By (o) By (o) By (z0)
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Therefore, Corollary implies that for any 0 < p <,

/Bp(xo) Dl da < C{ <<§>n +T(r>2> /BT( | Dul* dx

z0)

2/n TLTH
+ (/ |e|™ dx) / |lu|? dz + (/ |f|”+n2) , (3.76)
Br(z0) By (x0) Br(z0)

where C' = (n, A\, A) is a positive constant. By Hoélder’s inequality,

n+t2 2
n n q
(/ !f!’?”) < (/ If!qu) P2t
Br(iUO) Br(330)

where a = 2 — 4 € (0, 1) whenever ¢ € (3,n). Thus, (3.76) implies for any B, (z¢) C B, and
any 0 < p <,

2 PN £ r(r)? ul? dx
/BP@O)'Du’ dmﬁC{((T) + ())/B \Duld

r(z0)
2/n
e[ ) [ s,
B (zo) By (z0)
Case 1: ¢ =0.

We have for any B, (z¢) C B; and for any 0 < p <r,

[ ot cd ((2) o) |

By Lemma we may replace v 272% in the last estimate by p"~272%  in which case the
proof is complete. More precisely, there exists an Ry > 0 such that for any x¢ € B/2(0) and
any 0 < p <r < Ry, we have

[, ot <cd ((8) o) |

In particular, taking r = Ry yields for any p < Ry,

/ |Du|* dx < Cp"2+20‘{ / | Dul? dx + Hf”%q(Bl)}'
Bp(zo) B

Case 2: General coeflicient ¢ € L™(B;). We have for any B, (z¢) C By and any 0 < p <,

[, it cd ((2) o) |

| Dul|? dz + T”2+2a|‘f“%q(31)}-

r(z0)

| Dul|? dz + pn2+2aHfH%q(Bl)}-

7‘(1'0)

| Dul? dx + "~ 22 (F) +/ u? dx}
Br(20)

(3.77)

r(z0)
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where x(F) = ||f||2Lq(Bl)' We will prove, via a bootstrap argument, that for any =y € By,
and any 0 < p <71 < 1/2,

2 Py" 7(r)? ul? dz
[ oitar<cd (&) 4n0) [ o

r(70)
4y (X(F) + / w?dr+ [ |Duf? dl’) } (3.78)
B1 B

First by Lemma [3.6] there exists an R; € (1/2,1) such that there holds for any zy € Bg,
andany 0 <r <1-— R

/ u? dr < Cr™ | Dul|? dz + / u? dx (3.79)
Br(mo) Bq B1

where §; = 2 if n > 2 and ¢; is arbitrary in (0,2) if n = 2. This, combined with (3.77)),
implies

\Dul? de < C ((’—))” +7(r)?)
By (20) r B

Then (3.78) holds in the following cases:

| Dul? da + r" T2 (F) 4 ”uH%ﬂ(Bl)}'

(o)

(i) n = 2, by choosing §; = 2a,
(ii) n > 2 while n — 2 + 2« < 2, by choosing §; = 2.
However, for n > 2 and n — 2 4+ 2a > 2, we have

/B,,@o) Duf de < C{ ((2)" +707?) /BT(

z0)

‘Du|2 dx -+ ’]”2 <X(F> -+ ’]”61||u||§{1(31)> }

[]

Lemma |3.5 again implies that for any xg € Bg, and any 0 <r <1 — R,

/B - | Du)? dz < CTQ{X(F) + ||u||%{1(31)}‘
r(Z0

Then by Lemma [3.6] there exists an R, € (1/2, Ry) such that there holds for any xo € Bp,
and any 0 < r < R; — Ry

/ e Or+{X(F) + ullin s, } (3.80)
Br(xzo

where d; = 4 if n > 4 and 0, is arbitrary in (2,n) if n = 3 or 4. Notice that this last estimate

(3.80) is an improvement compared with (3.79). Substitute (3.80)) in (3.77)) and continue the
process. After finite steps we arrive at (3.78]).
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3.6.4 Holder Continuity of the Gradient

As before, we take U = By. We have the following estimate for the gradient of weak solutions
of equation (3.71). The proof is similar as before, so we omit the details.

Theorem 3.23. Let u € H'(By) be a weak solution of (3.71). Assume o € C*(By),
ce€ LY(By) and f € LY(By) for some g >n and a« =1—n/q € (0,1). Then Du € C*(By).
Moreover, there exists an Ry = Ro(, [a”|ca, ||c||La) such that for any x € Byjs and r < Ry,
there holds

o 1Du= (D0 o < 0 {1 o + o

where C = C(\, |a"|ca, ||c||ra) is a positive constant.

3.7 De Giorgi—-Nash—Moser Regularity Theory

This section introduces the celebrated De Giorgi-Nash—Moser regularity theory for the
Holder continuity of solutions, and we introduce two ideas for completeness. That is, we first
introduce De Giorgi’s approach which develops the local boundedness of solutions followed
by the estimate on its oscillation. These two ingredients will imply the Holder continuity of
solutions. Then, we study Moser’s approach, which also uses the same local boundedness
result combined with Moser’s version of the Harnack inequality to conclude the same result
on the Holder continuity of solutions. Note carefully that, unlike in the previous section,
we will not make any regularity assumptions on the coefficients of the elliptic operators.
Furthermore, the overall idea we use here relies on a delicate iteration technique rather than
perturbation methods.

3.7.1 Motivation

Before we proceed with the technical aspects of this theory, let us motivate its historical
relevance. Recall that the nineteenth problem in Hilbert’s famous program asked whether
or not minimizers w € Hg(U) N H?(U) of the energy functional

J(w) = /U L(Dw) dz

are smooth. The Lagrangian L is assumed to be smooth and satisfies some additional
conditions (such as those described in Chapter 2| specifically the first section on the calculus
of variations). The Euler-Lagrange equation for this variational problem is the nonlinear

elliptic equation
n

> (Ly,(Dw)),, =0 in U. (3.81)

=1
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Indeed, the minimizers are smooth and this can be proved using the Schauder estimates and
a standard bootstrap argument. To carry out the procedure, however, we initially require
the minimizer to be of class C%®. The main result of the De Giorgi-Nash—Moser theory
precisely ensures minimizers are of class C1® and thus it provided the crucial ingredient in
resolving Hilbert’s nineteenth problem.

What follows is only a rough explanation of the procedure but the arguments can certainly
be made rigorous. If we formally differentiate equation (3.81)) with respect to x; then insert
into the resulting calculation, we would obtain

n

Z (Lpipj (Dw)ww]’xk)wi =0.

ij=1
Thus, if we set u = w,, , this implies that u satisfies the linear elliptic equation

n

> (a7 (2)ug,)e, =0, (3.82)

i,j=1

where a"(z) = Ly, (Dw(z)) satisfies some type of uniform ellipticity condition. De Giorgi-
Nash—Moser theory ensures that if u is a weak solution of equation , then u is Holder
continuous and so w is a C** solution of (3.81)). Hence, the coefficients a”(z) are Holder
continuous and the Schauder estimates imply that u € C?>®. By bootstrap, u is of class C*
for k = 2,3,4,... and is therefore, along with w, smooth.

3.7.2 Local Boundedness and Preliminary Lemmas

Both De Giorgi and Moser’s approach rely initially on the local boundedness of solutions
before arriving at the Holder regularity result. We now state this result but defer its proof
to the next section.

Theorem 3.24 (local boundedness). Suppose a € L>(B;) and ¢ € L%By) for some
q > n/2 satisfy the following assumptions:

aij(x){’ifj > )\|§|2 forany = € By, £ € R",

and
1@ || oo (By) + llellzamyy < A

for some positive constants X and A. Suppose that v € H'(By) is a sub-solution in the
following sense:

/ a”’ DiuDjp + cup dr < fodz for any non-negative p € Hy(By). (3.83)
Bl Bl
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If f € LYBy), then u™ € L2.(By). Moreover, there holds for any 0 € (0,1) and p > 0

loc

1
Sup ut < C{WHWHLP(BI) + ||f||Lq(Bl)}a

where C'= C(n, X\, \,p,q) is a positive constant.

One strategy to prove this is to use a clever iteration procedure of Moser, which will also
appear in our proof of the weak Harnack inequality below. In either case, Moser’s iteration
procedure will also make use of the following elementary result.

Lemma 3.9. Let U be a bounded subset, v : U — R is measurable, |ulP € L*(U) forp > 1

and assume ) y
p
N p
d(p) : <|U|/U|u| da:)

lim ®(p) = sup u.

p—o0 U

1s well-defined. Then

Proof. Assume p’ > p is arbitrary. If u € L” (U), then Hélder’s inequality yields

/
b —p

(’—[1]| /U P da:)l/p < W( /U Ldr) # ( /U (uryr'/? dx)l/p,
= <’—[1]’/Uup/ d$>1/pl.

Hence, ®(p) is monotone increasing with respect to p > 1. Moreover, ®(p) is bounded above
by sup; u since

1
O(p) < (—
Ul Ju
Thus, lim,_,., ®(p) < supy u.
On the other hand, by definition of the essential supremum, for each € > 0 there exists

9 > 0 such that |A| > 0, where

1/p
(sup u)? dx) < supu.
U U

A={zeU|u(x) >supu — €}.
U

Therefore,
1 1/p
d(p) > (— / uP da:) > supu — €.
Al J 4 U

Hence, for every € > 0,
lim ®(p) > supu — e,

p—o0

which immediately implies that lim, .., ®(p) > supw. This completes the proof of the
lemma. O
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After establishing local boundedness, the Holder continuity of weak solutions will be a
consequence of the following important lemma and a Harnack or oscillation inequality.

Lemma 3.10. Let w and o be non-decreasing functions in an interval (0, R|. Suppose there
holds for all r < R,
w(rr) < yw(r) 4+ o(r)

for some 0 < ~,7 < 1. Then for any p € (0,1) and r < R we have
w(r) < O{ () w(B®) + (R}
where C'= C(~,T) is a positive constant and o = (1 — p)log~y/log.
Proof. Fix some r; < R. Then for any r < r; we have
w(rr) < yw(r) + o(ry)

since o is non-decreasing. We now iterate this inequality to get for any positive integer k

e

~1
w(thr) <o) +a(m) ) 7' < 7'w(R) +

7

o(r1)
1—7

Il
=)

For any r < ry, choose k so that
™ <r <7
This ensures that (log7*)(log7) < (log~)(log(r/r1)) and so
VF < ([ )oR 1 ToB T,

Hence, the monotonicity of w then implies that

1
w(r) < w(TF §7k_1wR+ —
(1) < wlr ) < (R) + 77 <

If we take 7 = 7" R'™*, we obtain

(1) 122 nR1=n
()" iy + LD,

w(r) < 7

2
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3.7.3 Proof of Local Boundedness: Moser Iteration

To illustrate the main idea in our proof of Theorem [3.24] let us describe our strategy for
the case when f =0, # = 1/2 and p = 2. By choosing an appropriate test function, we will
estimate the LP' norm of u in a smaller ball by the LP? norm of u in a larger ball for p; > ps;
that is, we establish a reverse type Holder inequality

lull Lo (B,,) < CllullLe2(B,,), (3.84)

for p; > py and r; < ry. The issue is our choice of test function forces the constant C'
to behave like (1o — 7)™, Moser’s approach, however, is to carefully iterate the estimate
and choose sequences {r;} and {p;} which avoids this constant from blowing up. Thus, this
iteration technique and Lemma allows us to send p; — 00, po = 2, r;1 = 1/2 and ry — 1
in to get the desired estimate.

Proof of Theorem [3.24l. The proof is long, so we divide it into several steps.

Step 1: We prove the theorem for § = 1/2 and p = 2. We follow Moser’s proof, but an
alternative proof by De Giorgi can also be found in [13]. For some k£ > 0 and m > 0, set
u=u"+k and

_ U if u <m,

m:{ m+k ifu>m.

Then we have Di,, =0 in {u < 0} and {u > m} and 4,, < 4. Set the test function
p = n*(upu— k") € Hy(By)
for some 8 > 0 and some non-negative function n € C}(By). Direct calculation yields

Dy = BrPaS  Diy,ui + n*al, Du + 2nDn(al a — K1)
> n*ul (8D, + D) + 2nDn(ala — k). (3.85)

Note that ¢ = 0 and Dy = 0 in {u < 0}. Hence, if we substitute such ¢ in the equation,
we integrate in the set {u > 0} then send m to infinity. Note also that u* < @ and
u? u— kPt < 4f w for k > 0. From the elementary inequality ab < 2ab < a®+0? for a,b > 0,
we have

A|Da||Dn|al an = a x b
= A(2/0)"2|Dnlay/?a > (A/2)"*nuy?| Dal

272 A
< T|Dn|2af;a2 + §n2a7€1|Da|2. (3.86)

145



Hence,

/aij(x)Diungp dr = /aij(x)Dia(ﬁDjﬂm + Dja)n*ul, + 2/ I(z)DsuDjn(ul w — kP )y do
> )\5/77 um\Dum|2dx+)\/7] um]Du|2dx—A/|DuHDr]|u un dx
> )\5/77 u’ | Dty |* d + ;\/77 u’ |Dal* dr — 2A2/\D77]2 u’ u? dr,

where we used ([3.85)) in the first line and we used (3.86|) to estimate the last line. Therefore,
noting that u > k, we obtain

B/n um|Dum|2dx—|—/n a’ | Du|? dz < C’{/|D77|2 Bqux+/|c|n2uﬂ u® + |f|772u6udx}

gC{/|Dn|2uiu2 dm+/c0n2uﬁu2 d:c}, (3.87)

|f|

where ¢g is defined as
Co — | ‘ + —

Choose k = || f||ze(s,) if f is not identically 0. Otherwise, choose arbitrary k£ > 0 and
eventually let K — 0*. By assumption, we have

||Co||Lq S A ‘I’ 1

B/2

Set w = @y, " and so

Dwf? < (1+ B){ B} | D + a5, | Daf?}.
Thus, from (3.87) we have
/|Dw|2772 dx < C’{(l + /) /w2|Dn|2dx +(1+0) /cow2n2 dx}

/|D(w77)|2772dx < C’{(1+B)/w2|Dn|2dm+(1-1—5)/00102772 dx}. (3.88)

Holder’s inequality implies

/ cown? dr < ( / cg da:>; ( / (nw)a-T dx) o < (1+A) ( / (w)a-T dx)l_l/q.
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By interpolation and Sobolev embedding with 2* = % > q2_—q1 > 2if ¢ > 5, we have

Il 2o < ellnwllz + Cln, g)e =[] 2

< e D(w)|z2 + C(n, q)e 7 [l 2

for small € > 0. Therefore, combining this with (3.88]) yields

/|D(w77)|2 dr < C’{(l + ) /w2|Dn|2da: +(1+ 6)2;7371 /w2n2 dw},
and in particular

[ 1D < ca+ gy [(pi + iyt

where « is a positive number depending only on n and ¢g. Sobolev embedding then implies

2x Hx « 2 2 2
[nw|™ dz <C(1+8)* [ (IDnl* +n°)w” dx,

where y = -5 > 1 for n > 2 and x > 2 for n = 2.
Choose the cutoff function as follows. For any 0 < r < R < 1, set n € C3(Bg) with the

property
2
=1in B, and |Dn| < ——.

If we recall the definition of w, we have

1/x «
1
( / axafx d:z:) < C(JF—B)2 / w2af dz.
- (R—r) Bg

Set v =+ 2 > 2, then we get

1/x ( — 1)
_ v—1) _
X < (7 v
(/Tumdx) _C(R—T)Q/BRU dx

provided that the integral on the right-hand side is finite. By sending m — oo, we conclude

that 1
_ =D\,
fallonisy < (Clr—r) el

Then we obtain
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provided that ||@|/zv(p,) < o0, where C' = C(n,q,\,A) is a positive constant indepen-
dent of . We shall iterate the previous estimated beginning with v = 2 and proceed via
2,2x,2x2,.... Now set for i = 0,1,2,...,

Z. 11
vi =2x" and r; = 5—1— R
Since v; = xVi—1 and r;_1 —1; = 270D we have for i = 1,2, ...,

[allies,,y < Clny g A M) |al| e, )

provided that ||@| -1, ,) < co. Hence, by iteration, we obtain

@l L (B,,) < cx | 2By

or in particular,
1

(/ uW’da;) gc(/ u2d:)3).
Bz By

Sending ¢ — oo in the previous esitmate yields

sup i < Clillias, or suput < Cllutpam, + k = CLu* 2y + | fllzasn }-

By By
This completes the proof of the theorem for the case p = 2.

Remark 3.12. If the subsolution u is bounded, we may simply take the test function
p = (@ — k) € Hy(By).

for some B > 0 and some non-negative function n € C3(By).

Step 2: We now prove the theorem for p > 2.
Based on a dilation argument, we take any R < 1 and define

u(y) = u(Ry) for y € By.

It is easy to see that u satisfies

/ a”(z)D;tu Dy + Elip dw < fodz
Bl Bl

for any non-negative ¢ € H}(B;) where

a(y) = a(Ry), é(y) = R*c(Ry), and f(y) = R*f(Ry),
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for any y € B;. Direct calculation shows
16| o (1) + 1l zagpy) = 67|z (1) + B2 ella(a) < A

We may apply what we proved above to @ in B; (iterating with v = p instead of 7 = 2) and
rewrite the result in terms of u. Hence, we obtain for p > 2

;up ut < C{R”/pHWHLP(BR) + R2n/q”fHLq(BR)}
R/2

where C' = C(n, A\, A, p, q) is a positive constant. The estimate in Byg can be obtained by
applying the above result to B_gr(y) for any y € Bygr. Take R = 1. This is Theorem @
for any 6 € (0,1) and p > 2.

Step 3: We now prove the theorem for p € (0,2). We show that for any 6 € (0,1) and
0 < R <1 there holds

1 -n
||u+||L°°(BGR) < C{W||U+||L2(BR) + R /quHLq(BR)}

1 +
< C{W”U lL2(BR) + ||f||Lq(BR)}'

For p € (0,2) we have

| e <t i, [ tyds
BR BR

Thus, by Holder’s inequality,
P PPR-ye? . S—" e / @ de) + 1f e
o =N g oo/, "

1 1 Y
< gl e *C{W%R(“” i) 11 ”“““”}'

Set h(t) = ||u'||Le(m,) for t € (0,1] so that the previous estimate can be rewritten as

1

h(r) < Sh(R) + [ 2oy + Cll o,y forany 0 <r < R<1.

_ ¢
(R —r)n/»
We apply Lemma from below to get forany 0 <r < R <1

C
"= =

Let R — 17. Hence, for any 0 < 6 < 1 we get the desired estimate

|u™ [ Lesy) + Cll f |l Lacsy)-

¥ || oo () < ( |u™ (Lo sy) + Cllf | La(sy)-

1—6)/r
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At the end of the proof, recall that we invoked the following lemma whose proof can be
found in [13].

Lemma 3.11. Let h(t) > 0 be bounded in |1, 71| with 79 > 0. Suppose for 1o <t < s <1
we have

h(t) < Oh(s) + +B

(s —t)°
for some 0 € [0,1). Then for any 1o <t < s < 71 there holds

h(t) < c(a,@){ﬁ—l—B}.

Moser’s iteration can again be applied to prove a closely related high integrability result.
We omit its proof but refer the reader to [I3] for the details.

Theorem 3.25 (high integrability). Suppose a¥ € L®(B;) and ¢ € L3(By) satisfy the
following assumption.:

MéP? < a¥(2)€&; < AE for any v € By, & € R™,

for some positive constants A\ and A. Suppose that u € H'(By) is a subsolution in the
following sense:

/ a”(z)Dyu Do + c(x)up do < fedx
B1

B1
for any non-negative ¢ € Hy(By). If f € LY(By) for some q € [255, %), then ut € LT (By)
for qi* = %1 — % Moreover, there holds

s < C{ Nty + 1o, b

where C'= C(n, A\, A\, q,e(K)) is a positive constant with

= (/{|c|>K} |c\3) "

3.7.4 Holder Regularity: De Giorgi’s Approach

3o

For simplicity, we establish the Holder continuity of weak solutions to homogeneous equations
without lower-order terms,

Lu=— Z D; (a”(z)Dju) in Bi(0) C R,
ij=1
where a” € L>®(B;) satisfies
MEP?P < a(2)&€ < AEJ? for all x € B1(0) and & € R”

for some positive constants A and A.
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Definition 3.9. The function uw € H} (Bj) is called a subsolution (resp. supersolution)
of the equation Lu =0 if

/ a’(z)Diu Do dx < 0 (resp. > 0) for all non-negative ¢ € Hy(By).
B

First, we will need the following, which indicates that monotone convex mappings pre-
serve subsolutions and supersolutions. The proof follows from a direct computation and we
omit the details (cf. [13] for the proof).

Lemma 3.12. Let ® € CN(R) be conver. Then

loc

(1) If u is a subsolution and ® > 0, then v = ®(u) is also a subsolution provided that

(i1) If w is a supersolution and ® < 0, then v = ®(u) is a subsolution provided that
GRS Hlloc(Bl)'

Next is a Poincaré type inequality. But unlike the more common Poincaré inequalities
that assume u belongs to Hj(B;) or an inequality that involves the difference between u
and its average, this version says that if u € H'(Bj) vanishes in a measurable portion of the
domain, then it can be controlled by its gradient in L.

Lemma 3.13 (Poincaré-Sobolev). For any € > 0 there exists a constant C = C(e,n) such
that for u € HY(By) with p({z € By |u = 0}) > ep(By), there holds

/ u*dr < C | |Dul?dx.
B1 B

Proof. Suppose the contrary. Then there is a sequence {u,,} C H'(B;) such that

p({x € By|u=0}) > eu(By), / u?, dr =1, | Dtpp|? dz — 0 as m — oo.
Bl Bl

Hence, we may assume u,, — ug € H'(B;) strongly in L?(B;) and weakly in H'(By).
Clearly, ug is a non-zero constant. Thus,

0= lim U — uo|* dz > lim Uy, — | d
m—oo | p m—oo [o, —0}

> |ug|* inf p({t,, = 0}) > 0,
which is a contradiction. O

If u is some positive weak solution, or more generally a supersolution, and it is bounded
uniformly away from zero in a measurable portion of the domain, then we can use the
previous two lemmas to prove that u is locally bounded away from zero.
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Theorem 3.26 (Density). Suppose u is a positive supersolution in By with
p{z € Bilu=1}) = eu(By).
Then there ezists a constant C' depending only on €, n, and A/ such that

inf u>C.

By

Proof. We may assume that «w > 6 > 0. Then let 6 — 0. By Lemma [3.12) v = (logu)~ is
a subsolution, bounded by log 6~!. Then Theorem implies

1

2
supv < C </ \v|2dac) :
By 2 B

Observe that u({x € By|v=0}) = p({z € By|u > 1}) > eu(By). Lemma implies

>
supv < C (/ |Dv|2dx) . (3.89)
By 2 B

Set p = (/u for ¢ € C}(Bs) as the test function. Then
iy 2 U(xYD:u D, F(e\Diu D
OS/GZ]($)DiuDj (§—> dx = —/gZ—a (@) ;u s da:—|—2/<a () Diut D;¢ de,
u u u

which implies

/C2|Dlogu|2dx§0/|D§|2dx.
Thus, for fixed ¢ € C}(By) with ¢ =1 in By, we obtain
|Dlogul*dr < C.
B1

Combining this with (3.89)) yields

supv = sup(logu)™ < C,
By 2 By
which implies

inf u>e ¢ >0.
By /o

]

The preceding density theorem will be used to control the oscillation of a weak solution
u, which is the key ingredient in deriving its local Holder continuity.
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Theorem 3.27 (Oscillation). Suppose that u is a bounded solution of Lu = 0 in By. Then
there exists a v = y(n,A/X) € (0,1) such that

0sCp, ,U < 7Y 0SCp, U. (3.90)

Remark 3.13. The oscillation of f over the set S is given by

oscs(f) :=sup f(z) — irelgf(x)

zeS

Proof. In fact, local boundedness follows from Theorem Set

a1 = supu and [; = inf u.
B1 By

Consider the solution
u— 3 a; —u

or .
a1 — 51 ay — 51

Note the following equivalence:

1 U—ﬂl 1
> — <= > -,
U_2(041+51) a— By =2
1 ap — U 1
< — < —.
u_2(041—|—51) ap—pr T 2

Case 1: Suppose that

1 ({x € B : 2&?—:?1) > 1}) > %M(Bﬂ-

Applying the density theorem to C"j;—fﬂll > 0 in By, we get for some constant C' > 1
U — 1
inf b > —,
Biss iy — [y C

which implies

. 1
]13111/f2u > B+ 5(041 — ).

Case 2: Suppose that

1 ({w ep, Az 1}) > %M(Bl)-

061—51

Applying the density theorem as before and noting that supp, U= infp, , —u, we obtain

1
supu < ag — = (a1 — f1).
By /2 ¢
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Now set

as = supu and [y = inf u,
By o By /o

and note that 85 > 1 and as < ;. In both cases, we have

1
ag — B2 < <1 — 6) (a1 — B).
This is precisely the estimate (3.90) with v =1—1/C € (0,1). O
At last, we are now equipped to state and prove De Giorgi’s Holder regularity theorem.

Theorem 3.28 (De Giorgi). Suppose Lu = 0 weakly in By. Then there holds

u(xr) —u
supu(e)] + sup D =UDN < o0 070 ful .
B2 z,y€By /2 ‘:U - y‘
where o = a(n, A/N) € (0,1).
Proof. The first part of the estimate follows from Theorem that is,

sup [u(z)] < C(n, A/N)|[u]|2(5,).

Bia

We prove the second part of the estimate. Fix any two distinct points x,y € B/, set
r = |z —y| and let

w(r) := oscp, (u) = supu — inf u.
Br Br

By Theorem [3.27] and rescaling, we obtain that
w(r/2) < ~yw(r).
Hence, Lemma [3.10] implies that
w(r) < Crtw(1/2) forall 0 <r <1/2,
where a = a(n, A/)) is some number in (0, 1). By Theorem [3.24] we have that
w(1/2) < sup u(e)| < Cllullzas

By 2

Inserting this into the previous estimate yields
w(r) < Orul|r2es,),

which further implies

sup LD =W o p N full .

z,y€By /2 |:L' - y|a

This completes the proof.
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3.7.5 Holder Regularity: the Weak Harnack Inequality

We now state and prove the weak Harnack inequality. As a result, we derive Moser’s Harnack
inequality as a special case, and we combine it with our previous local boundedness result to
give another proof of the interior Holder continuity of weak solutions. Then, we also examine
applications of the weak Harnack inequality to obtain a Liouville type theorem and a version
of the strong maximum principles for weak solutions.

For simplicity, we only consider elliptic equations without lower order terms. Suppose
U CR" a¥ e L®(U) satisfies

MEP < a(x)&& < AJE)? forall 2 € U and € € R
for some positive constants A and A.

Theorem 3.29 (Weak Harnack inequality). Let u € H*(U) be a non-negative supersolution
m U, e,

/ a’(z)DsuDjp dx > / feodx for any non-negative ¢ € Hy(U). (3.91)
U U

Suppose f € LI(U) for some ¢ > n/2. Then for any Br C U, there holds for any p € (0, 5)
and any 0 < 0 <1 <1,

n 1 :
infu+ R« >C(—/ up>p
Bor ’ HfHLq(BR) o R B:r

where C'= C(n, A\, \,p,q,0,7) is a positive constant.

The proof of the weak Harnack inequality and the result on the Hdélder continuity of
weak solutions will make use of the following result, which is a special case of the local
boundedness result of Theorem [3.24]

Theorem 3.30 (local boundedness). Let u € H'(U) be a non-negative subsolution in U in
the following sense:

/ a' (x)DiuDjp dr < / fodx for any non-negative ¢ € Hy(U).
U U

Suppose f € LUU) for some q > n/2. Then there holds for any B C U, any r € (0, R),
and any p > 0,

1 o_n
S]lngpU < C{m””ﬂhﬂ(&ﬁ + R™ ||f||Lq(BR)}

where C' = C(n, \, A\, p,q) is a positive constant.
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Proof of the weak Harnack inequality. We prove this for R = 1.

Step 1: We prove the result for some p = py > 0. Set u = u+k > 0 for some k > 0 to be
determined below and v = u~!. First, we derive the equation for v(x). For any non-negative
¢ € H}(By), let the function @2 be the test function in equation (3.91). Then

/ a’ (z)D;u _];'0 dx — 2/ a” (J:)D,»uDjﬂ_% dx > f_% dx
By U By U B U
Note that Du = Du and Dv = —u?Du. Therefore, we obtain
/ a’(z)DjuDip + fopdr <0 where f:= {
By U

That is, v is a non-negative subsolution to some homogeneous equation. Choose k = || f|| La(v)
if f # 0. Otherwise, choose arbitrary k > 0 and let k& — 0. Note ||f||rap,) < 1. Thus,
Theorem implies that for any 7 € (6,1) and any p > 0,

supu P < C'/ u Pdx,

By

that is, we deduce the desired estimate

proz o [arw)t—o [wra [ ww) ([ wa),

where C' = C'(n,\, A, p,q,0,7) is a positive constant. The main step here is to prove there
exists a pp > 0 such that

/ uPdy - / a dr < C(n,\, A\, p,q,T). (3.92)

To show this, it suffices to prove the following claim:
For any 7 < 1,

/ el de < C(ny N\ A, p,q)m" or C(n,\, A, p,q,7) (3.93)
B,
where

w=logu — [ with 8 = ]Bf\l/ log @ dx,

B,

since this claim and the fact that —pg|w| < +pow < po|w| would imply that

/ P da( / u? dr) = / e PP Elos 0 gy / e

= / e Pow de’/ e’ dx < C<n7 >\7A7pJQ7T)'
™ BT
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To prove estimate (3.93)), we notice that it follows directly from the John-Nirenberg lemma,
i.e., Lemma [3.2] provided that we show w € BMO, i.e.,

1
—/ |w —wy,|de < C.
" JB,

We first derive the equation for w. As before, consider 7 1y to be the test function in (3.91])
and assume that ¢ is non-negative with ¢ € L>(B;) N H}(B;). By direct calculations and
the fact that Dw = @' Du, we get that

/ a” (z) DywD;(we) dx < / a”(z)DiwD;p dx + —fodx (3.94)
B B By

for any non-negative ¢ € L*(B;) N Hy(B1). Replace ¢ by ¢? in (3.94). Then Holder’s
inequality yields

|Dw|?¢* do < C( |Dpl*dx + [ | f|p? d:c). (3.95)

B By By

Furthermore, Holder’s inequality and the Sobolev embedding imply

[ 1716 o < 1l ll21P | < C )Pl
B, L7=2(B))

Hence,

|Dw|*¢*dx < C(n,q,\, A) |Dgl|? dz. (3.96)

B1 B
Here, we can choose ¢ to be in C}(B;). Moreover, for any Bo,.(y) C B, we can choose ¢
with supp ¢ C B, (y), ¢ =1 in B,(y), and [Dyp| < 2. Then

/ |Dw|* dw < Cr" 2.
Br(y)

Hence, Poincare’s inequality yields

1 1 1 1 1
il lw — wy, | de < /2</ ]w—ww|2dx)2 < 7 (7“2/ ]Dw|2dac>2 < C.
™ N B y) r )

By (y)

That is, w € BMO and this proves the claim.

Step 2: We now verify the result for any p € (0, -"5), but we only sketch the main steps
as it is similar to the proof of Theorem [3.24] It suffices to prove the following claim. Namely,
by the existence of py from Step 1, Moser’s iteration scheme yields, for any 0 < r; <ry <1
and 0 < ps < p1 < 5,

1 1

(/ ut? dx)a < C(n,q, )\,A,Tl,rz,pl,pg)(/ uP? d:v) " (3.97)
B B

71 T2
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To start, we take ¢ = @ 7~1n? for B € (0,1) as the test function in (3.91]). Then, we can
establish that

1
/ |Dﬂ|2ﬂ’ﬁ’1n2 dr < C’{—
B

52

Set v =1—8¢€(0,1) and w = @/2. Then we have

/ | Dw|*n? dz <

1
/ |Dn|?a' =" da + — m?fﬁl’ﬁ da:}.
By ﬁ B1 k

G [ D ) de

or

/ |D(wn)Pdz < ﬁ / (1Dl + ) d

for some positive a > 0. By the Sobolev embedding and a proper choice of a cutoff function
with x =n/(n —2), we obtain for any v € (0,1) and 0 <r < R < 1,

1/x C 1
wX dx < / w? dz,
</B,‘ > (I=y)*(R—=7)*Jp,

or
1 1 1
(o)™ = () (], o)
S 1=7)*(R—r) Br
1 140 2/ 1/
< <M> 7(/ a dx) ! (3.98)
R—r Br
for some o > 0. We may iterate this last estimate finitely-many times to get (3.97)). ]

A special case of the weak Harnack inequality is Moser’s version.

Theorem 3.31 (Moser’s Harnack inequality). Let u € H'(U) be a non-negative solution in
U, ie.,

/a“(:c)D,»uchpdf‘f - / fedz for any ¢ € Hy(U).
U U

Suppose f € LU(U) for some q > n/2. Then there holds for any Br C U,

max u < C’(minu +R* 4 ||f||Lq(BR)>
Br/2 Bry2

where C'= C(n, A\, A\, q) is a positive constant.

The proof of Moser’s version of the Harnack inequality follows from the weak version and
Lemma [3.9
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Proof of Moser’s Harnack Inequality. Define ®(p,r) by

O(p,r) = (/ u? da:)l/p.

r

Then (3.98) implies the estimate

o(yy.r) < (CLETN g (3.99)
Set form =0,1,2,3,...,
Y =9m =x"p and 7, = 1/2 + 27D,
Then, by iterating estimate , we get
O(x"7,1/2) < (Ox)*H) =" "0 (p, 1).
By sending m — oo here and applying Lemma [3.9] we arrive at
supu < CP(p,1).
By /s
The desired estimate follows from this and the weak Harnack inequality. O

Now, our goal is to establish the Hoélder continuity of weak solutions using the local
boundedness result and Moser’s Harnack inequality.

Corollary 3.3 (Holder continuity). Let u € H'(U) be a solution of the equation in U:

/aij(ﬂf)DiuDjSOdiv = / fedz for any o € Hy(U).
U U

Suppose f € LI(U) for some g > n/2. Then u € C*(U) for some o € (0,1) depending only
onn,q, A and A. Moreover, there holds for any Br C U

ute) — )| < (Y (o [ ) B}

for any x,y € Brjs where C = C(n, A\, A\, q) is a positive constant.

Proof. We prove the estimate for the case R = 1. Set for r € (0,1)

M (r) = maxu and m(r) = min u.

T B’r

Then M(r) < oo and m(r) > —oo. It suffices to prove for any r < 1/2,

w(r):= M(r)—m(r) < CT“{(/ u? dx)é + ||f||Lq(Bl)}. (3.100)

B1
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Set 0 =2 —n/q and apply Theorem to M(r) —u > 0in B, to get

sup(M(r) — ) < C{ inf (M(r) = u) +°| s, |

Br/2 BT/Q
Combining this with the definitions of the supremum and infimum, we get

inf (M(r) —u) < sup(M(r) — u)

B2 B, /o
< O it (M) =)+l } < OLsup () =) 4+ o
/2 /2
Hence,
M(r) = m(r/2) < C{(M(r) = M(r/2) + 7| Fllacs,) (3.101)

Likewise, applying the same argument to u — m(r) > 0 in B,, we get
M(r/2) —mir) < C{(m(r/2) — m()) + 1l (3.102)
Adding and together yields
w(r) +w(r/2) < CL (@) = w(r/2) + 1) flsam

or
w(r/2) < yw(r) + Cr|lf | Lacs,)

for some v = (C' —-1)/(C+1) < 1.
Apply Lemma with g is chosen such that o = (1 — u)log~v/logT < pd. Then

w(p) < Cp™{w(1/2) + | Fllzapn} for any p e (0,1/2] (3.103)
On the other hand, Theorem |3.30] implies
w(1/2) < 0{(/ u?dz)” 4| flzomn }
B

and inserting this into (3.103|) completes the proof of the corollary. [

3.7.6 Further Applications of the Weak Harnack Inequality
A Liouville theorem

First, we point out an application of Lemma Namely, we can derive the following
Liouville theorem.
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Theorem 3.32. Suppose u € H'(U) is a solution to the homogeneous equation in R":
/ a’(z)DiuDjpdr =0 for any ¢ € Hy(R™).

If u 1s bounded, then u is constant.
Proof. From the previous corollary, we showed that there exists a v < 1 such that
w(r) < yw(2r).

By iteration, we obtain
w(r) < v*w(2fr) =0 as k — oo

since w(2%r) < C if u is bounded. Hence, for any r > 0,
w(r) = 0.

Thus, u = constant. O

Maximum principles for weak solutions

An application of the weak Harnack inequality is the strong maximum principle adapted for
weak solutions. However, we introduce some necessary definitions and consider the weak
maximum principle for weak solutions. We say that v € H'(U) satisfies u < 0 on U
if its positive part ™ = max{u,0} belongs to H}(U). Of course if u is continuous in a
neighborhood of OU then u satisfies u < 0 on OU if the inequality holds in the classical
pointwise sense. Likewise, we say u > 0 on OU if —u < 0 on 9U; and u < v € H(U) on OU
if u—v<0ondU. As usual, we take

Lu = —D;(a”(z)Dju)

and solutions, supersolutions, and subsolutions associated with this elliptic operator are
understood in the distributional sense.

Theorem 3.33 (Weak Maximum Principle for Weak Solutions). Let u € H'(U).
(a) If Lu <0 in U, then supy u < supgy u™.
(b) If Lu > 0 in U, then infy u > infayy u™.

Proof. Since Lu < 0 in U in the distribution sense, we write
/ a”(z)DjuD;vdr < 0
U

for all non-negative v € H}(U). If we set £ = supy, u™ and take v = max{u — ¢,0}, then
ve HYU), Dv=Duifu—{¢>0and Dv=0if u—¢ < 0. We proceed by contradiction.
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That is, assume v > 0 or u > ¢ in some subset B CC U with u(B) > 0; otherwise, if v =0
then we would be done. Clearly, Dv = Du within B; but the positivity of (a”(x)) and the
uniform ellipticity condition imply that

/ |Dv|*dz <0,
B

and we get that v, and therefore u, is constant in a subset of U with positive measure. At the
same time, a basic result guarantees Du = 0 a.e. in this subset and we deduce a contradiction.
This completes the proof for part (a). Part (b) follows along a similar argument; namely, we
can apply the previous proof to —Lu < 0 and the fact that infp u = —supp(—u).

O

From this, we immediately deduce a uniqueness result.
Corollary 3.4. Let u € HY(U) satisfy Lu=0 in U. Thenu=0 in U.

We are now ready to introduce the strong version of the maximum principle adapted for
weak solutions. Unlike the weak maximum principle above, we are only assuming the weak
solution belongs to H'(U). We do not assume the solution vanishes at the boundary in the
trace sense, i.e., it does not necessarily belong to Hj(U). The Harnack inequality plays an
essential role in its proof.

Theorem 3.34 (Strong Maximum Principle for Weak Solutions). Let U be a bounded and
open subset and let u € H'(U) satisfy Lu < 0 in U. Then, if for some ball B CC U we have

supu = supu > 0, (3.104)
B U
the function uw must be constant in U.

Proof. Denote B = Bgr(y) and without loss of generality, we can assume that Byg(y) C U.
Now let M = sup,; u and then apply the weak Harnack inequality (see Theorem with
p = 1 to the supersolution v = M — u. Namely, we use the following dilated version of the
weak Harnack inequality with p = 1:

R7™"™|v|| L1 (Byp(y)) < C inf w.
Br(y)

Hence,
R_”/ (M —u)dx < Cinf(M —u) =0
Bar B
and so u = M in Bsyg. Therefore, supremum of w is attained for a larger ball in U. We can

then show uw = M in U by a simple covering argument. O

Remark 3.14. Likewise, we have an analogous result which states the solution to Lu > 0
in U is constant whenever it attains an interior minimum.
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CHAPTER 4

Viscosity Solutions and Fully Nonlinear Equations

4.1 Introduction

This chapter introduces a very weak concept of solution for second-order elliptic equations
called viscosity solutions. To simplify our presentation, the results given here are for equa-
tions involving linear elliptic operators without lower order terms, but they can certainly be
extended to fully nonlinear elliptic equations of the type

F(D*u,u,x) = f(z) in U,

where F': R™" x R x R" is usually a monotone and convex mapping possibly nonlinear in
D?u and u. For a nice introductory treatment of this topic, we refer the reader to Caffarelli
and Cabré [3].

The advantage of considering the notion of viscosity solution is it allows us to consider
elliptic equations in non-divergence form, and it extends the notion of classical solutions.
Another advantage is that viscosity solutions are stable under local uniform convergence
in both v and F' and because existence and uniqueness results for such solutions can be
obtained under far more general conditions. In fact, in the definition given below, notice
that we can make sense of such solutions without resorting to differentiating the equations
directly. This was a major obstacle in extending elliptic theory to equations having non-
divergence form, since the usual procedure of integrating by parts and treating equations
in the distribution sense was not generally possible, or the usual notions of solution was
not always guaranteed to exist in this context. Thus, finding a successful framework that
circumvents this obstacle was a tremendous breakthrough in the modern theory of elliptic
partial differential equations.
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The results we establish below should be reminiscent of those for elliptic equations in
divergence form studied earlier, however, we obtain the results via perturbation methods
relying heavily on approximation and density arguments. More precisely, we shall give a
concise introduction, develop the Alexandroff maximum principle along with a Harnack
inequality for viscosity solutions. Then we use these to develop the interior Schauder and
W?2P regularity estimates for viscosity solutions. Global versions of these regularity results
without proof are also provided at the end of the chapter.

Let U be a bounded and connected domain in R™ and (a) is of class C(U) and satisfies

MEP < a(2)6&; < Al
for any x € U and any £ € R™. We consider the operator L in U defined by

Lu=— Z a”(z)Diju for u € C*(U). (4.1)

ij=1
Throughout, we shall assume that f belongs to C'(U).

Definition 4.1. The function u € C(U) is said to be a viscosity supersolution (respec-
tively viscosity subsolution) of the equation

Lu=f in U (4.2)

if for any xy € U and any function o € C*(U) such that u — ¢ has a local minimum
(respectively, local mazimum) at xy there holds

Lg(xo) = f(wo) (respectively, Le(xo) < f(xo))-
The following definition of solution should be compared with the result of Theorem [1.10]

Definition 4.2. We say u € C(U) is a viscosity solution of equation (4.1)) if it is both a
viscosity subsolution and a viscosity supersolution.

Remark 4.1. By density, the C? function ¢ in the above definitions may be replaced by
quadratic polynomials.

Next we look at the class of all solutions to all elliptic equations. First we make the
following important observation. Let eq, es, ..., e, be the eigenvalues of the Hessian matrix
D%p(z0) where ¢ is any C? function at 2o € U. We have the following chain of equivalent
estimates:

n

Z a” (o) Dyjip(0) < 0 <= Zo‘iei <0 for a; € [A A,

ij=1 i=1
< Z a,e; + Z ae; <0,

e; >0 e; <0
< E ozieig E ai(—ei),
e; >0 e; <0
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where the last line implies

A Z ae; <A Z a;(—e;).

e; >0 e; <0

Namely, if u is a “supersolution,” then the positive eigenvalues of the Hessian matrix D?p(x)
are controlled by its negative eigenvalues. This motivates the following definition.

Definition 4.3. Suppose f € C(U) and A and A are two positive constants. We define
u € C(U) to belong to ST(\, A, f) if for any xy € U and any function ¢ € C*(U) such that
u — @ has a local minimum at xq, there holds

A Z ei(azo)+AZei(a:o)2f(£Uo),

ei(x0)>0 e; <0

where ey (o), e2(xg), ..., en(x0) are eigenvalues of the Hessian matriz D*¢(x).
Similarly, we definew € C(U) to belong to S~ (A, A, f) if for any xg € U and any function
o € C*(U) such that uw — ¢ has a local mazimum at xo, there holds

A Z ei(zo) + A Z ei(zo) < f(xo).

ei(z0)>0 e;<0
We denote S\ A, f) =ST(MA, /) NS (N A, f)

Notice that any viscosity supersolution of belongs to the class ST (A, A, f). In fact,
the class ST(A\, A, f) and S~ (A, A, f) also include solutions to fully nonlinear equations such
as the Pucci equations.

We say the matrix A = (a”) belongs to the class Ay, with any two constants A\, A > 0
if A is symmetric and

MNEP < a(2)6& < AJEJ? forz e U, £ € R

so that its eigenvalues belong to [A, A].
Now, for any symmetric matrix M = (m%), we define the Pucci extremal operators:

M= (M) =M (\A,M)= inf a“m",
AEA)\’A
MFT(M) = MY\, A, M) = sup a’m".

AEA)HA

Then Pucci’s equations are given by
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for some functions f, g € C(U). Indeed, we can show that

MOAM) =2 e+ AN e

e; >0 e; <0
MT(N A, M) AZGZ+)‘Z€Z’
e; >0 e; <0
where eq, es, ..., e, are eigenvalues of M. Hence, u € ST(\, A, f) if and only if

M~ (N A, D?u) < f

in the viscosity sense, i.e., for any ¢ € C*(U) such that u— ¢ has a local minimum at zy € U
there holds
M\ A, D*p(x0)) < flo).

An analogous statement holds for u € S™(A, A, f) and viscosity subsolutions.

By definition of M~ and M™, we can check that for any two symmetric matrices M and
N

Y

M= (M) + M~ (N) < M~ (M + N) < M*(M) + M~(N)
< M*(M + N) < M*(M) + M*(N).

This will be an important property we invoke later in establishing the regularity of viscosity
solutions. We now establish the Alexandroff maximum principle for viscosity solutions,
and we may think of it as a replacement of the energy inequality for weak solutions to elliptic
equations in divergence form. The Alexandroff maximum principle is sometimes called the
Alexandroff-Bakelman-Pucci estimate. First, recall that L defined in R” is said to be
affine if

L(z) =ty + {(z),

where ¢y € R and / is a linear function. We denote the convex envelope of a function v
defined in U by

I'(v)(z) =sup{L(z) : L <wv in U, L is an affine function}
L

for any « € U. The function I' is indeed a convex function on U, and it is the largest possible
affine function below of v. Moreover, the set of points x in which I'(v) touches v from below,
i.e., the set {v = T'(v)}, is called the (lower) contact set of v. The points in the contact set
are called contact points. The following lemma is the Alexandroff maximum principle and
note that u is not required to be a solution to any elliptic equation. The classical version is
stated as follows, which we provide without proof (see Lemma 3.4 in [3] and Section 9.1 in
[T1] for detailed proofs).
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Lemma 4.1. Suppose u is a CY! function in By with u >0 on 0B,. Then
1/n

supu~ < C(n)(/B o }det(DQu) dx) :
1Mu=Iy

B1
where T, is the convex envelope of —u~ = min{u, 0}.

The version of this for viscosity solutions is the following, which we will prove with the
help of Lemma [4.1]

Theorem 4.1 (Alexandroff Maximum Principle). Suppose u belongs to ST(\, A, f) in By
with u >0 on OBy for some f € C(U). Then

1/n
supu~ gC(n,)\,A)(/ { }(f+)ndx) ,
Bin{u=TI,

B1
where Ty, is the convexr envelope of —u~ = min{u,0}.

Proof. The goal is to ultimately apply Lemma to the convex envelope I',(z). Namely,
we need to prove that I', belongs to 01,1(31) and at a contact point xy, we have that

f(z0) 20 (4.3)

and
L(z) < Ty(x) < L(x) + C(n, \, A)(f(z0) + €(x))|z — 20/ (4.4)

for some affine function L and any x sufficiently close to xy with e(x) = o(1) as x — x.
Once we prove this claim, clearly (4.4) implies that

det(D?T,)(z) < C(n, A\, A) f(z)" for a.e.z € {u=T,}.

So Lemma {.1] applied to the function I', implies the result. Therefore, it remains to prove
the claim.

Let xy be a contact point, i.e., u(xg) = I'y(zo). Without loss of generality, assume xy = 0.
We may also assume, after subtracting a supporting plane at xq = 0 if necessary, that u > 0
in By with u(0) = 0. Take h(z) = —¢|x|?/2 in By. Clearly, u — h has a minimum at 0,
and note that the eigenvalues of D?h(0) is just —e with multiplicity n. By definition of
ST\ A, f), we have that

—nAe < f(0).

We obtain (4.3)) after sending ¢ — 0 in the preceding estimate.
Finally, to obtain estimate (4.4]), we will prove

0 < Tyu(z) < C(n, A\, A)(f(0) + e(x))|z|* for = € By,
where €(x) = o(1) as x — 0.
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We need to get an estimate for

C, = —maxI,
r? B,

for small » > 0. By convexity, I', attains its maximum in the closed ball B, at some point on
the boundary, say at (0,...,0,7). Now the set {z € By : T',(z) <T',(0,...,0,7)} is convex
and contains B,. Hence,

Lu(2',7) >T,(0,...,0,7) = Cyr? for any x = (2/,r) € By.
Choose a positive number N to be specified at a later time. Set
R, ={(2',x,) : |2'| < Nr, |x,| <7}

We construct a quadratic polynomial that touches w from below in R, and curves upward
very steeply. Set, for some b > 0,

h(x) = (@n +7)* = bla'|*.
Then,
(a) for x, = —r, h < 0;
(b) for |2'| = Nr, h < (4 — bN?)r? < 0 if we take b = 4/N?;
(c) for x, =r, h =4r? — b|a’|* < 4r?.

Therefore, if we take

and since T, is the convex envelope of u, we have h < I',, < u on dR,. Moreover, iNL(O) =
Crr?/4 >0 =T,(0) = u(0). Then, after lowering h if necessary, we deduce that u — h has a
local minimum in the interior of R,. It is easily checked that the eigenvalues of D?h are

C,/2,—-2C,/N? ..., —2C,/N>.
Hence, by definition of ST(A, A, f), we have that

C, C,
L — — <<
A 5 2A(n 1)N2 < H}guxf.

We can now choose N suitably large, which depends only on n, A and A, so that
2A(n —1)/N* < )\ /4.
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Thus, we obtain

Cr <

4 4
3, Max f; that is, H}B%XF“ < sz max f

Hence,

4
Fy(z) <maxT, < XE(T’)TQ,

T

where €(|x|) = €(r) = maxg, f = o(1). This completes the proof.
[

Finally, we end this section with a basic result as a consequence of the Calderon-Zygmund
decompostion. We will need this result when establishing the Harnack inequality and the
regularity theory for viscosity solutions. Here we work in dyadic cubes rather than balls.
(2 denotes such a dyadic cube after refinement of a given Euclidean domain. We often use
Q) to denote a dyadic cube centered at xy € R™ with side length ¢. Sometimes we omit

xo if g =0, i.e., Qu(0) = Q.

Lemma 4.2. Suppse measurable sets A C B C Q1 have the following properties.

(a) |A| <6 for some d € (0,1);

(b) for any dyadic cube Q, |AN Q| > 8|Q| implies Q C B for the predecessor Q of Q.
Then |A| < |B|.

4.2 A Harnack Inequality

Theorem 4.2 (Harnack inequality). Suppose u belongs to S(\, A, f) in By with u > 0 in
By for some f € C(By). Then

sup u < C’( inf u + HfHLn(Bl)> (4.5)
By o B2

where C' is a positive constant depending only on n, X and A.

As we have encountered already, Harnack type inequalities imply the interior Holder
regularity of solutions. Thus, we have the following result whose proof we omit but follows
similarly to that of Corollary

Corollary 4.1. Suppose u belongs to S(A\, A, f) in By for some f € C(By). Thenu € C*(By)
for some o € (0,1) depending only on n, A\, and A. In particular,

ju(z) —u(y)| < Ol —of" (supul + [ fllsoon)) for any 2.y € Byjo
1
The main ingredient in proving the Harnack inequality is the following result.
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Proposition 4.1. Suppose u belongs to S(\, A, f) in Qq 5 with u > 0 in Qu 5 for some
f € C(Quym). Then there exist two positive constants ey and C, depending only on n, X, and
A, such that if

inf u<1 and n < €,

it <1 and | flie, <o

then

supu < C.
Q14

To see how Theorem follows from this, consider the function

u

| . (5> 0),
infg, ,u+0+¢€ 1HfHL"(Q4\/z)

us =

provided that v € S(\, A, f) in Q4 with u > 0 in Q4 5. Applying Proposition to us
then sending 6 — 0, we get

sup u < C’(lnf U+ ||l @y ym)-
Q14 Quy

Then estimate (4.5) follows from a standard covering argument.

Lemma 4.3. Suppose u belongs to ST(\, A, f) in By s for some f € C(Byz). Then there
exist constants g > 0, u € (0,1), and M > 1, depending only on n,\, and A, such that if

u>0 in By, mfu <1 and HfHLn(B2f < €, (4.6)

then
Hu < M}NQq| > p.

Proof. The idea here to localize where the contact set occurs by choosing suitable functions.
Namely, we construct a function g that is “very concave” outside (); so that if we “correct”
u by g, the contact set is in Q1. First note that By C Byjp C Q1 C Q3 C By . Define g
in B, s by

g(x) = —M(1 - [2]?/4n)’

for some 5 > 0 to be specified later and some M > 0. We choose M with respect to 3 so
that
g=0 on 0B, /5, and g < -2 in Q3. (4.7)

Set w = u + g in By ;. We shall prove that w, in particular g, belongs to S*(X, A, f) in
By /7 \Q1 provided we choose 3 large enough. Suppose ¢ is a quadratic polynomial such that
w — ¢ has a local minimum at zy € By 5. Then u — (¢ — g) has a local minimum at z, as
well. By definitions of St (A, A, f) and the Pucci extremal operator M~

M= (N A, D*p(0) — D?g(0)) < f(0),
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or

M (A A, D*p(x0)) + M~ (X, A, —=Dg(w0)) < f(z0)-

Therefore, to show g belongs to ST(A, A, f) in B, 5 \Q1, it remains to show M~ (X, A, —D?g(z))
is non-negative. Well, the Hessian matrix of g is given by

Dyjg(x) = (MB/2n)(1 — |x*/4n)"d;; — [MB(B — 1)/ (2n)*|(1 — |=[*/4n)*z;z;.
Choose z = (|z|,0,0,...,0), then the eigenvalues of —D?g(z) are given by
et = (MB/2n)(1 — |x|*/4n)°2((28 — 1)|=|*/4n — 1) with multiplicity 1,
e~ = — (MpB/2n)(1 — |z|*/4n)?? with multiplicity n — 1.

Now choose /5 > 0 large enough so that et > 0 and e~ < 0 for |x| > 1/4. Thus, for |z| > 1/4,
we have

M~(\ A, —D?*g(x)) = et (2) + (n — 1)Ae (z)

_ ]2”_5(1 — Jaf?/4m)* 2 A

> 0.

20 —1
4n

22~ 1) = (n = DAL~ |af?/4n)|

In fact, we have actually proved that
weSTI\A, f+1n) in By m

for some n € C§°(Q1) and supp(n) C [0, C(nA, A)]. We may apply the Alexandroff maximum
principle (Theorem to w in By 5. Also note that infg, w < —1 and w > 0 on 9B, 5

due to (4.6) and (4.7)). Thus,

1/
<e( (11 + )" da)
By mM{w=T"w}
< Cllf lzn(,ym + CHw =T} N QY™
Choosing ¢; small enough, we get
(1/2) < C{w =T} NQu"" < CH{u < M} N Qi7"

since w(x) = I'y(z) implies w(z) < 0 and thus u(z) < —g(z) < M. This completes the
proof.
[

Next we derive the power decay property of the distribution function of w.
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Lemma 4.4. Let u belong to ST(N\, A, f) in By s for some f € C(By ). Then there exist
positive constants €y, € and C, depending only on n, A, and A, such that if

uw>0in By 4, infu<1 and [|f|inB, ) < €o, (4.8)
Q3 2vn

then
Hu>t}NnQq < Ct™ for t > 0.

Proof. Under the assumptions (4.8)), we claim
Hu > My Qi < (1—p)* for k=1,2,..., (4.9)

where M and p are the same parameters from Lemmal[4.3] We proceed by induction. Indeed,

for k =1, (4.9) is just Lemma So assume ([4.9)) holds for k — 1. Set A = {u > M*} N Q,
and B = {u > M*'} N Q,. We claim that

A< (1-p)B (4.10)

We do so by using Lemma [1.2] Clearly, A C B C @ and |[A] < |[{u>M}NQ:| <1—pby
Lemma [4.3] We claim that if Q@ = Q,(xo) is a cube in @Q; such that

AN Bl > (1 - p)lQl, (4.11)

then Q N Q, C B for Q = Qs,(xy). We prove this by contradiction. Consider the transfor-
mation x = xg + ry for y € Q1 and = € Q = @Q,(xp), and the function

a(y) = M~* Du(z).
Then @ > 0 in By s and infg, @ < 1. It is easy to check that & € ST(A A, f) in By 5 with
Hf”Ln(BQﬁ) < €. In fact,

~ 1”2

fly) = Wf(l') for y € By -

Hence,

< r
1l By < WHJCHLW(BQW < | fllen(sy sz < €o

Therefore, @ satisfies (4.8]). Thus, Lemma applied to u implies
p<aly) < Myn@i| =r"Hu(x) < M} NnQl.

Hence, |Q N A¢| > u|@|, but this contradicts with (4.11]). Applying Lemma yields
@.10). O
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Proof of Proposition [4.1. We show there exist two constants § > 1 and My > 1, depending
only on n, A, and A, such that if u(zy) = P > M, for some x¢ € By, there exists a sequence
{@r} C Bz such that

u(zy) > 0FP for k=0,1,2,....

This contradicts with the boundedness of u and thus sup By U < M,.

Suppose u(zg) = P > M, for some xg € By/4. We will determine M, and 6 in the process.
Consider a cube Q,(x) centered at xy with side length r, which will be specified below. We
want to find a point z; € Q4 /(7o) such that u(z,) > 6P. To do so, we choose r such that
{u > P/2} covers less than half of Q,(xy). This can be done using the power decay of the
distribution function of u (see Lemma . Namely, since info, u < infg, ,u < 1, Lemma
implies

{u> P2 N Qu| < C(Pf2)
We choose r such that r"/2 > C'(P/2)~¢ and r < 1/4. Hence, we have, for such r, Q,(z) C
Ql and
1
GXE )||{u>P/2}ﬂQr(x0)| <1/2. (4.12)
Next we show that for 6 > 1, with 6 — 1 small, u > 0P at some point in Qy /n,(70). We
proceed by contradiction. That is, assume u < 6P in Q4 /. (20). Consider the transformation

v =r+ry for Qum and x € Q4 (20)

and the function

_ . 0P —u(x)

u(y) = S
Clearly, & > 0 in B, s, and 4(0) = 1, and thus infg, @ < 1. Tt follows that @ belongs to
ST\ A, f) in B, /m with 11|z (Byym) < €0- Indeed, we have

~ ?”2

fly) = —mf(x) for y € By

and so .
n < ——— n <
[alr? (Baym) = 0 — 1>PHfHL (Byym) = €0
provided we choose P so that r < (6 — 1)P. Applying Lemma to @ and noting that
u(x) < P/2 <= u(y) > (0 —1/2)/(6 — 1) > 1 provided that @ is close to 1, we get
1

GG S PN Q)| = a2 (0= 1/2/@ -1}

< OB —-1/2)/(0 — 1)) < 1/2.

This contradicts with (4.12). Hence, we deduce the existence of a § = 0(n, A\, A) > 1 such
that if
u(xg) = P for some g € Bya,
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then
u(z1) > 0P for some 1 € Qy /- (70) C Bonr(0)

provided that
C(n, \,A)P~/" <r < ( —1)P.

Specifically, we need to choose P such that P > (C/(8—1))" ("9 and then take r = C P~/
[terating the previous result yields a sequence {xj} such that of for any £k =1,2,3,...,

u(xy) > %P for some xy € By, (T1-1)

where 7, = C(9F~1P)=</n = CH~(=De/n p=e/n,
To ensure {z;} C B2, we take ) 2nry, < 1/4. Hence, we choose M, so that

e/n - —(k=1)¢/n ( C )n/(n—i-e)
M, > 8 0 d My > (——
o> 8n kz:; an =

9

and choose P > M. This completes the proof. O

4.3 Schauder Estimates

In this section, we prove the Schauder estimates for viscosity solutions. Throughout this
section, we always assume that a”(z) € C(B;) satisfies

MEP < a¥(2)&&; < Al

for any z € B; and any £ € R™.

We shall need the following approximation result. Namely, it states that if the coefficient
matrix (a”(z)) is a “close” perturbation of the constant matrix (a”/(0)) and thus is “close”
to the identity matrix by the uniform ellipticity assumption, then the viscosity solution u is
“close” to a solution of a Poisson equation at least locally.

Lemma 4.5. Suppose uw € C(By) is a viscosity solution of
a’(z)Dijju = f in B
with |u] <1 in By. Assume for some € € (0,1/16),
la? = a" (0) ][z (By,0) < €.

Then there exists a function h € C(Bss) with a”(0)Dy;h = 0 in Bsjy and |h] < 1 in By
for which
[ = llzee (B, ) < C(€ + [ fllznay)

where C' > 0 is a constant and v € (0,1) both depending only on n, A, and A.

174



Proof. We can certainly solve for such a harmonic function h € C(Bs/4) N C>(Bs/4) where
a’(0)D;jh = 0 in Bsjy and h = u on 9Bsyy. The maximum principle ensures |h| < 1 in
Bs,, and note that u belongs to S(A, A, f) in B;. Corollary implies u € C*(Bs4) for
some a = a(n, A\, A) € (0,1). Thus, from the global Schauder regularity theory for harmonic
functions, the basic estimate

[ullga(s,,y < Clr, A M)A+ || fl[Ln(sy))

implies
12llcarzz,,) < Cllulleas,,y < Cln, A M)A+ ([ fllns))-
Since u — h = 0 on 0Bj,4, we get for 6 € (0,1/4),

lu = All =5y, 5) < CO*(1+ || fllni))- (4.13)

We claim that
| DAl Le(08y),_5) < CO*72(L+ || fllLeis))- (4.14)

In fact, for any 2o € Bs/4_s, applying interior C? estimates on h — h(x1) in Bs(xg) C Bsjs
for some x; € dBj(xo) yields

|D?h(x0)| < C672 sup |k — h(z1)| < CS25(1 + || |l Lo (ay))-

Bs(zo)

Note that u — h is a viscosity solution of
a”(z)Dyj(u — h) = f(z) = (a”(z) — a”(0))Dyjh := F in By
So by the Alexandroff maximum principle and (4.13))-(4.14]),

[[u — hllpec ) < lu— hlleBsy,,_s) + ClIF|

<l = Rl zoe(By,4_s) + CIID?| oo By, p) la”? — a™ (0]l Lr(sy,0) + Cll | (m0)
< C(6 4+ 62 ) (L + || fllr (1) + Cllf Nl Lnisn)-

Bs4_s B3/a_s)

The proof is complete once we take § = /e and then v = /4.
O

Definition 4.4. A function g is Holder continuous at 0 with exponent « in the L™ sense if

e (0 = sup (57 [ 1ote) = g0 az) " < o

o<r<1 T
Theorem 4.3 (Schauder estimates). Suppose u € C(By) is a viscosity solution of

a’(z)Diju = f in By.
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Assume (a¥) is Holder continous at 0 with exponent a in the L" sense for some a € (0,1). If
f is Hélder continuous at O with exponent o in the L™ sense, then u is C** at 0. Moreover,
there exists a polynomial P of degree 2 such that

|u — P|re(B,(0)) < C.r** for any r € (0, 1),
|P(0)] + [DP(0)| + | D*P(0)] < C,,
Cy < C([lullzeemy) + [£(0)] + [fleg, (0)),

where C' > 0 is a constant depending only on n, A\, A, and [a"]ce, (0).

Proof. We organize the proof into two steps.

Step 1: Preparations We assume f(0) = 0 otherwise we may consider v = u—b“z;xz; f(0)/2
for some constant matrix (b¥) such that a”(0)b” = 1. By scaling, we also assume that
[a]ce, (0) is small. Next, by considering for § > 0,

u
[ull Lo (y) + 07 flog, (0)

we may also assume [|u|z=(p,) < 1 and [f]oe, (0) < 6.
Step 2: Suppose u € C(By) is a viscosity solution of

aij(x)Diju = f in Bl

with
[ull ey < 1, [a]ce, (0) <6
and

1 1/n
(ﬁ/ ik dx) < or® for any r € (0,1).
T B

We claim there exists a constant 6 > 0, depending only on n, A, A, and « and a polynomial
P of degree 2 with
lu— P||zoo(p,) < Cr*** for any r € (0, 1), (4.15)

and
|P(0)] + |DP(0)] + |D2P(O)| < C(n, \ A, «). (4.16)

First, we show there exist p € (0,1), depending only on n, A\, A, and «, and a sequence
of polynomials of degree 2,

Py(z) = ap + b - + (1/2)2" Cya,
such that for any £ =0,1,2,...,

a’(0)Dy; P, = 0, |lu — PkHLDO(BHk) < ke, (4.17)
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and
‘Cbk — CLk71| + ,ukilybk — bkfly + /L2(k71)|ck — Ck,ﬂ S C/,L(kil)(yra). (418)

Note that Py, P_; = 0 and C' is a constant depending only on n, A\, A, and «.
Obviously, the theorem follows from (4.17))-(4.18) since ay, by and Cy converge to some
a, b and C'; and the limiting polynomial,

Px)=a+b-x+ (1/2)2"Cx,
satisfies
|Pu(z) = P(x)] < C(lap* + |a|ptHDF 4 po2F) < Cprer
for any |z| < p*. Hence, for |z| < u*,
lu(z) = P(2)| < |u(z) = Pi(2)] + |Pe() — P(a)] < O+,
which implies
lu(z) — P(z)| < C|z|*™™ for any = € B;.

Therefore, it only remains to prove (4.17)) and (4.18]), and we do so by induction. The initial
step k = 0 is clearly true. Assume both estimates hold for £k = 0,1,...,¢. We prove the next
step kK = £+ 1 holds. Consider the function

1

u(y) = W(U — P)(u'y) for y € By.

Then @ belongs to C'(By) and is a viscosity solution of

a’(z)Dyi = f in By
where
a”(y) = p~"a" (u'y),
and
fly) = =" (f(u'y) — " (u"y) Di; ).
We want to apply Lemma [£.16] So we check that

3 = ()| < p~la” = a¥(0)l|zes,0 < [a7]54(0) <6,

and
1Fllenim) < 07N fllines o) + 0~ sup |D*Rol[|a” — a”(0)||pnes,,) < 6+ C8

where we used

l l
|D*P| <Y |D*P, — D*Py| <Y pF Ve < C
k=1 k=1
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Taking € = C(n, A\, A)§ in Lemma[4.16] we can find h € C(Bs,4) with a”(0)D;;h = 0 in Bsy
and |h| <1 in By, such that

@ — hllLe(B,,,) < Ce +¢€) < 2C€.
Write P(y) = h(0) + Dh(0) + y” D2h(0)y/2. Then the interior estimates for h yield
@ = Pllres,) < 1@ = hlles, + B = Pllies,) <20 + Cp® < p**®
by choosing 1 small and then e small accordingly. Rescaling back, we get
lu(x) — Pyz) — pfCrIP(pta)| < ) for any z € Bt
This implies for k = ¢+ 1 if we take
Pypa(2) = Pe() + ' P(u™"x).
Estimate follows easily. O]

We also have the following Cordes-Nirenberg type estimate, but we omit its proof.

Theorem 4.4 (Cordes-Nirenberg). Suppose u € C(By) is a viscosity solution of
a’(z)Dijju = f in B;.

Then for any o € (0, 1), there exists an 6 > 0 depending only on n, \, A, and « such that if
1 i ij (| 1/n
(ﬁ | la(@) ¥ (0) dz) " <6 forany f € (0,1),

then u is C%* at 0. Namely, there exists an affine function L such that

lu — LlLoo(BT(O)) < O, rite for any r € (0,1),
|L(0)[ + |DL(0)| < C,

. < Ol + s (7 [ @),

<r<1

where C' > 0 is a constant depending only on n, A\, A, and «.

4.4 W?*P Estimates

In this section, we assume throughout that f € C'(By), (a¥) € C(By) and there exist A, A > 0
such that
NE? < a(2)6:65 < AJ¢f?

for any z € U and any £ € R”. Our main result here is the following
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Theorem 4.5. Suppose u € C(By) is a viscosity solution of
a’(z)Dju= f in By.

For any p € (n,00), there exists an € > 0 depending only on n, A\, A, and p such that if

1 . . 1/n
(m b ¥ (x) — a” (xo)[" dfﬂ) < e for any B, () C By,

then w € W2P(By). Moreover,

loc
[ullw2(B,,5) < Cllulle) + [[fllLr),
where C' > 0 is a constant depending only on n, \, A, and p.
As before, it suffices to prove the following.
Theorem 4.6. Suppose u € C(Byg, ;) is a viscosity solution of
a”(x)Dyju = f in Bg g

For any p € (n, ), there exist € > 0 and C > 0 depending only on n, A\, A, and p such that
if

HUHLOO(BSﬁ) <1 and HfHLp(Bs\/ﬁ) <e
and if

1 . . 1/n
<|B (o) /B (o) la" (x) — a" (xo)[" dx) <€ for any B,(vy) C By,
T (xo

then u € W*P(By) and ||ullw2rp,) < C.
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CHAPTER b

The Method of Moving Planes and Its Variants

In this chapter, we introduce a powerful tool used to study the properties of solutions for
semilinear elliptic equations. The method is called the method of moving planes and it
originated from Alexandroff in his study of embedded constant mean curvature surfaces.
It was further developed in the works of Serrin [22] and Gidas, Ni and Nirenberg [10] and
later adapted to many other problems involving differential and integral equations (see [5]
and the references therein). We will focus on applying this method to obtain symmetry
and monotonicity results for positive solutions of the Lane-Emden equation and we shall
essentially adopt the framework of Chen and Li [4].
Consider the following semilinear elliptic problem

—Au=uP, z€R" n>3. (5.1)
Our goal is to prove the following main result.

Theorem 5.1. Forp = (n+2)/(n—2), every positive C? solution of equation (5.1) must be
radially symmetric and monotone decreasing about some point, and thus assumes the form

— 2\ T
[n(n = 2)\ 4n_2 for some A >0 and 2° € R".
(A2 + |z —202) "2~
For1<p< (n+2)/(n—2), the only non-negative C* solution of equation (5.1)) is the trivial
one, u = 0.

u(r) =

5.1 Preliminaries

We first start by introducing some necessary tools for the method of moving planes. Namely,
we introduce the Kelvin transform and various comparison theorems, i.e., maximum princi-
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ples, for elliptic problems on unbounded domains. First, the Kelvin transform of the function
u, which we denote by u, is given by

_ 1 x
u(zx) = —|x|"—2u(W)
Then, if u is a solution of equation (/5.1]), then @ is a solution of
— A = [P0 F2gp g e R™M\{0]. (5.2)

Now we introduce the maximum principles based on comparisons, which are the essential
ingredients in the method of moving planes.

Theorem 5.2. Assume that U is a bounded domain. Let ¢ be a positive function on U
satisfying
—A¢p+ Az)p > 0. (5.3)

Assume that u is a solution of

—Au+c(z)u>0 inU,
{ u>0  ondU. (5-4)
If
c(x) > Mz) forall x €U, (5.5)
then

u>0 in U

If U is unbounded, then the result remains true provided that the following additional
condition 1s assumed: ()
u(x

liminf —= > 0. 5.6

Proof. We proceed by contradiction. Let v(x) = u(x)/¢(x) and assume that v < 0 at some

point in U. Thus, v < 0 at that same point, since ¢ is positive in U. Let 2° € U be the

minimum of v and by a simple calculation, we obtain that

—Av =2Dv - %qﬁ + é(—Au + %u) (5.7)
However, since 2° is a minimum of v, we have that
—Av(z°) <0 (5.8)
and
Du(z°) = 0. (5.9)



But from (5.3))-(5.5) and since u(z?) < 0, we have that

—Au(2°) + %(:I:O)u(xo) > —Au(2°) + MzV)u(2®) > —Au(2®) + c(2)u(z?) > 0.

By inserting this into (5.7) and using (5.9), we get that —Awv(z®) > 0, but this contradicts
with . This completes the proof. In the case that U is unbounded, the same arguments
apply since the additional assumption guarantees that the minimum of v does not leak
away to infinity. |

Remark 5.1. As illustrated in the proof, conditions (5.3|) and (5.5) are required only at the
points where v attains its minimum or at points where u is negative.

In our application of the above theorem, we will consider two cases:
(a) U is a “narrow” region,
(b) the coefficient ¢(z) has sufficient decay at infinity.

First, we examine when U is a narrow region; namely, let us consider the narrow strip with
width ¢ > 0, i.e.,
U={zeR"|0<z </}
We can take ¢(z) = sin((z; + €)/f) so that —Ayp = (1/£)%*p. Thus, A\(z) = —(1/¢)?, which
can be “very negative” if ¢ is suitably small.
Corollary 5.1 (Narrow region). If u satisfies (5.4)) with bounded function c(x), the width ¢
of the region U is sufficiently small, c(x) satisfies (5.5), i.e., c(x) > Xz) = —1/¢2, then
u>0 i U

In the case of (b) with n > 3, we can choose a positive number ¢ < n — 2 and take
¢(z) = |z|7%, then a simple calculation yields
q(n—2—q)

|z[?

~A¢ = 6 = —A)o.

Therefore, if ¢(x) has sufficient decay, the previous theorem implies the following.
Corollary 5.2 (Decay at infinity). Assume there exists R > 0 such that
_9_
c(x) > —w, for all |z| > R. (5.10)
x
Suppose that

lim u(x)|z|? = 0.
|z]—o0

Let U be a region contained in B$(0). If u satisfies (5.4) on U, then
u(z) >0 forall x € U.

Remark 5.2. As pointed out in the last remark, one can see that condition (5.10)) is only
required at points where u is negative.
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5.2 The Proof of Theorem [5.1]

We are now ready to prove Theorem [5.1]

Proof. Set p = Z—Jjg and we shall first impose a fast decay assumption on the solution, i.e.,
u(z) = O(|z|~™2). (5.11)

Define
Yy = {x: (1,22, ...,2,) ER" |27 < )\} and T := 0%,

and let 2 be the reflection point of  about the plane T}, i.e.,
o= (2N =z, 29, ..., 1y).

Define
uy(z) = u(x®) and wy(z) = ux(z) — u(z).

Step 1: Prepare to move the plane near —oo.
Namely, we will show that we can find N > 0 suitably large so that if A < —N,

wy(z) >0 for all z € X,. (5.12)
Indeed, the mean value theorem implies
—Awy(z) = uh(z) — uP(x) = p}~ wa(2), (5.13)

where 1, (x) is some number between uy(x) and u(x). In view of Theorem |5.2/ and Corollary
m, we take c(z) = —py? () and see that (5.12)) holds provided we show ¢(z) has sufficient
decay at infinity at the points & where wy(Z) < 0. Well, at these points, we have

ux(Z) < u()
and so
0 < un(Z) < (@) < u(@).

Indeed, by assumption ((5.11]) and since p = 22

@) = O (7)) = o(al ™)

and the decay of the coefficient is greater than 2 as required in Corollary [5.2], which implies
the desired result. Namely, we can find N > 0 sufficiently large so that for A < —N (or |Z|
sufficiently large), we must have .

Step 2: Moving the Plane.
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We can increase the value of A, and thus move the plane T} to right, provided inequality

(5.12)) holds. Define
Ao :=sup{A|wy(xz) >0, forall x € 3,}.

Clearly, Ay < oo due to the asymptotic behavior of u for z; near co. We claim that
wy, =0 in Xy,. (5.14)
Otherwise, the strong maximum principle on unbounded domains implies that
wy, () > 0 for all x € interior(%,,). (5.15)

Then we show that we can then move the plane T, further to the right a small distance,
thereby contradicting the definition of Ag and conclude that ([5.14)) holds. Namely, we claim
there exists a g > 0 such that for all § € (0,4y), we have that

Wxo1s(x) >0 for all x € Xy 4. (5.16)

At first glance, one may assume that this would follow from Corollary [5.1} however, we
cannot apply this directly since we are not able to guarantee that w,, is bounded away from
0 on the left boundary of the narrow region. To circumvent this, we apply Corollary
instead but to a carefully chosen auxiliary function. Namely, we set

} w ()

O =)

where
o(z) = |z|7? with ¢ € (0,n — 2).
Then, a direct calculation will show that
D A 1
— Aty = 2Dy - ?925 + ( — Awy + 7%0 5 (5.17)

Claim: There exists Ry > 0, independent of A, such that if 2° is a minimum point of w,
and w)(2°) < 0, then |2°| < Ry.

To show this claim holds, we proceed by contradiction. Assume that 2° is a negative
minimum of w, but that |x°| can be chosen to be suitably large. Thus,

— Ay (2°) <0, (5.18)
and
Dwy(2°) = 0. (5.19)

By the asymptotic behavior of u at infinity and since |2°] is sufficiently large,

g(n—2—q) _ Ag(a?)
|20 o(x0) -

c(a®) i= —phy (2P > —
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It follows from ([5.13)) and wy(xo) < 0 that

Ag(z")

0= —Awy(2") + c(z”)wy(z”) < —Awy(x”) + (1)

wy (z2?).

Hence,

( — Awy + %wg (z%) > 0.

Combining this with (5.17) and (5.19)) leads to —Aw,(z°) > 0, which contradicts with (5.18).
This completes the proof of the claim.

Hence, if is violated for any d > 0, then we can find a sequence of positive numbers
{6;} — 0 where for each i, we denote the corresponding negative minimum of wy, s, by x'.

Then, by the last claim, we have || < Ry for i = 1,2,3,.... Then, by compactness, we can
extract a subsequence, which we still denote by {z'}, that converges to some point 2° € R".
Hence,
Du_j}\o(xo) = lim D4, (l‘l> =0,
1—00
Wy (2°) = lim @)1, (2") < 0.

1— 00

From this, we deduce that wy,(z") = 0, since we also know that w,, > 0. Moreover,

Duny (2°) = Dity, (a")9(a”) + 3, (2°) Do (a”) = 0. (5.20)

In view of (5.15)) and the fact that wy,(z") = 0, we must have that z° lies on the boundary
of 2),. Then Hopf’s lemma indicates that

Gw,\o 0
ov (=)
which contradicts with (5.20) and we conclude that wy, = 0 or that u(z) = uy,(x) for all

T E X Xo-
So far, we have shown that u is symmetric and monotone decreasing about the plane

< 0,

T\,. Since the coordinate axis z; can be chosen arbitrarily, we conclude that v must be
radially symmetric and monotone decreasing about some point. Moreover, basic uniqueness
theory for ordinary differential equations imply that u must have the form as described in
the theorem.
Step 3: Removing the fast decay assumption.

Apply the Kelvin transform on the solution u(z) to get v(z):

1 T

Then v has the fast decay at infinity and satisfies the following semilinear equation in punc-
tured space,

—Av =P in R"\{0}.
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We can apply the same arguments of Steps 1 and 2, after minor modifications (we must
carry out the procedure on X,\{2z*} to avoid the possible singularity introduced by the
Kelvin transform) to conclude that v is radially symmetric and monotone decreasing about
some point z° in R™. If 2° is not the origin, then the origin is a regular point and u has the
fast decay property at infinity and we are done. Otherwise, if v is symmetric and monotone
about the origin, then u is also symmetric and monotone about the origin since it is easy to
check that u(z) = |z~ 2v(z/|z]?).
Step 4: Liouville property in the subcritical case.

It remains to prove that u = 0 in the subcritical case p € (1, Z—J_rg) Again, by the Kelvin
transform, we have that v, as defined earlier, is now a solution of

—Av = [P D= 20 iy R™ {0}, (5.21)

Since the subcritical condition implies that p(n —2) — (n+2) < 0, the coefficient of equation
decays at infinity. Therefore, we may apply the method of moving planes, i.e., Steps
1-3, to get that v is radially symmetric and monotone decreasing about some point 2° € R".
In fact, it is clear that z° = 0 due to the singular coefficient of equation (5.21]). Thus, it
is easy to see that u is also radially symmetric and monotone decreasing about the origin.
Then, as a consequence of the well-known Pohozaev type identity for equation (5.21), u = 0.
Alternatively, we can argue, using the translation and dilation invariance of equation (5.21)),
that v must actually be constant and therefore trivial. This completes the proof of the
theorem. O

Remark 5.3. We see that the “decay at infinity” principle is important in applying the
method of moving planes to the Lane-Emden equation in R™, but we did not make use of
the “narrow region” principle. Indeed, the narrow region principle is more appropriate for
certain bounded domains. Namely, it is a key ingredient in applying the method of moving
planes for radially symmetric, bounded domains. A consequence of this is the following result
whose proof we omit.

Theorem 5.3. Assume that [ is a Lipschitz continuous function such that

[F(p) = f(a)] < Colp — 4
for some positive constant Cy. Then every positive solution u € C?(B(0)) N C(B1(0)) of

{ —Au = f(u) in B(0),
u=20 on 0B1(0),

15 radially symmetric and monotone decreasing about the origin.

5.3 The Method of Moving Spheres

In this section, we introduce a variant of the method of moving planes known as the method
of moving spheres. This alternative technique uses the inversion of the Kelvin transform on

186



spheres and invokes comparison theorems to obtain symmetry and monotonicity properties
of solutions to certain elliptic problems. The advantage of this approach is that we can
deduce the classification and Liouville theorems for non-negative solutions in one fell swoop.
This is, in some sense, more direct than the method of moving planes, which first establishes
the radial symmetry and monotonicity properties then reduces the problem into an ODE
one to arrive at the desired results. The moving sphere approach is also advantageous in
certain domains such as half-spaces.

First, we state and prove two fundamental calculus lemmas that are important ingredients
in the method of moving spheres.

Lemma 5.1. Let f € C'Y(R™), n > 1 and v > 0. Suppose that for each x € R", there exists
A = Ax) such that

(‘y)\(—q:l‘)yf(/[ + )\(m)Qﬁ) = fly), y € R"\{z}. (5.22)

Then for some a >0, d > 0, and o € R",

f) = ()"

d+ ‘LU — I0‘2
Proof. From ([5.22), we have that

C:= lim [y["f(y) = A(z)" f(z), v €R"
ly[—o0

If £ =0, then f = 0 and we are done. However, if ¢ # 0, then f does not change sign.

Therefore, without loss of generality, we may take £ = 1 and f positive. For large y, taking

Taylor expansions of the left-hand side of (5.22)) at 0 and x yield

1) = (30 (104 5L A0 % + ol ) (5.23)
and
£) = () (1) + @@ L=t oll ™), (5.24)

where o(|y|™!) represents some higher-order term such that o(|y|™!)/|y|™' — 0 as|y| — oo.

From our assumption that ¢ = 1, we combine ((5.22)), (5.23)), and ([5.24)) together to get

f(x)7172/1/ﬁ x 7172/1/%

5, (#) = O 5 (0) — v

It follows that for some zg € RY, d > 0,

Fly) 2" =y — x> +d.

Solving for f(y) will finish the proof. O

187



Lemma 5.2. Let f € CYRY), n > 1, and v > 0. Suppose that

A v Yy —
i < n _ >\
<|y—x|) f<x+/\|y |2> fly), forall \>0,z€R" |y—x|> A

Then f = constant.

Proof. For x € R", A > 0, define
= (= > \.

Indeed, g,./(2) = 0 and g,.(rz) > 0 for > 1. Then, it follows that

d
dr Gal2| (r2) ’r:l =

Hence, a direct calculation yields
2Df(z+x)-z+vf(z+x) > 0.

Since z and x are chosen arbitrarily, a change of variables shows that

2Df(y) - (y—z)+vf(y) =0

(5.25)

Multiplying the preceding inequality by |z|™' and sending |r| — oo, we conclude that
Df(y)-0 <0 for all y € R" and § € S*'. Hence, Df = 0 in R", and this completes the

proof.

]

We give an alternative proof of Theorem using the method of moving spheres. We
interrupt momentarily for some notation. For x € R™ and A > 0, define the Kelvin transfor-

mation of u by

uz A (y) = ( A >n2u<az+)\2lj__5|2>, y € R"\{z}.

ly — |
The following lemma ensures that we may start the moving sphere procedure.
Lemma 5.3. For every x € R", there exists AN(x) > 0 such that u, z)(y) < u(y).

From this we may define the following value A\ € (0, 00|. For each x € R" we set
Xo(z) = sup{u > 0|uz\(y) < uly), forall |y —az| > A€ (0,u]}

Proof of Theorem[5.1. We consider the two cases separately.

Critical case: Let p = (n+2)/(n — 2) and suppose that u is a positive solution of ({5.1)).
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Step 1: We claim that if \o(z) < oo for some point = € R™, then
Ug ro(z) = w in R™\{0}.
Without loss of generality, we may take x = 0 and Ao = Ao(0), uy = up_, and
Ua={y e R"[[y| > A}.

From the definition of Ag,
U > Uy, on Xy,.
Recall that the Kelvin transform of v satisfies

n+2

—Auy = u)ﬁ, A>0.
So by setting wy = u — uy, we get
n+2

nt2 n—o .
—Awy, = ur2 —uy? >0 in ¥y,

If wy, = 0 in ¥,,, then we are done. Otherwise, Hopt’s lemma and the compactness of
0B),(0) imply that
d

dr dB), (0)

By the continuity of Du, there exists R > A such that

Wy, >c> 0.

d
R >¢/2 >0, for A €[\, R], r € [\, R].
Thus, since wy = 0 on 0B,(0), we have
wy(y) >0 for X € [\, R], |y| € (\, R]. (5.26)

Setting m = mingp, o) wy, > 0 and since —Aw,, > 0 in X,

n—2

W (y) = mWa for [y[ > R.

Hence,
Rn72
wx(y) > U=t (ur(y) — ux,(y)), for |y| > R. (5.27)

By the uniform continuity of u on Bg(0), there exists ¢ € (0, R — \g) such that for \ €

(Ao, Ao + €),
A”%(A?i) — Ag—Qu(Aﬂiﬂ o M

, for |y| > R.
ly|? "lyl? 2
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From this and ((5.27)), we get

wx(y) >0 for A € [N, Ao +¢€], |y| > R. (5.28)

However, estimates (5.26]) and (5.28)) contradict the definition of Ag. This proves the claim.
Step 2: We claim that if A\g(z¢) = oo for some 2y € R", then \o(z) = oo for all z € R™.
Observe that, by definition,

Uz a(y) < uly), forall A >0, |y —xo| > A

Thus,

lim [y]*"u(y) = oc.
[y|—o0

Assume that \g(x) = oo for some € R™. Then by Step 1,

lim |y|"_2u(y) = lim |y|”_2ux7)\0(x) (y) = /\O(x)"_Qu(x) < 00,

ly|—o00 ly|—o0

and we arrive at a contradiction.
Step 3: We claim A\o(z) < oo for all x € R™.

To see this, note that if \g(zg) = oo for some point 2o € R"™, then Step 2 ensures
Ao(z) = oo for all x € R™. Lemma [5.2] then implies that u = constant. Since u is assumed
to be positive and we have shown it is necessarily constant, we arrive at a contradiction.

Step 4: We are now ready to complete the proof of the theorem in the critical case. From
the previous steps, for each € R" it follows that Ag(x) < 0o and ug @) = v in R"\{z}.
From Lemma [5.1] there are a,d > 0 and some o € R" such that

n—2

a n-2
) Q,xGR”.

d+ ‘33—5130‘2

u(z) = (

This proves the result in the critical case.

Subcritical case: Let p < (n+2)/(n—2) and suppose u is a non-negative solution of ([5.1)).
The proof in this case is similar to the critical case. Namely, due to the Kelvin transform,
we can show that Ag(zp) = oo for some zy € R™. As before, this implies that A\o(z) = oo
for each x € R™. Then, by Lemma [5.2] © = constant and so v = 0. This completes the
proof. O
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CHAPTER 6

Concentration and Non-compactness of Critical Sobolev Embeddings

6.1 Introduction
In this chapter, we explore the breakdown of the compactness of the injection
WhP(U) — LY(U)

where 1/¢ = 1/p — 1/n (see the appendix for the statements and proofs of the Sobolev in-
equalities and embeddings). A closely related and important issue is when weak compactness
fails to imply strong compactness. We have already encountered problems from the calculus
of variations in which we recover the strong compactness of a minimizing sequence from its
weak compactness by exploiting the coercivity and the weak lower semi-continuity of the
functional undergoing minimization. Here we focus on the case when this compactness issue
arises from a concentration phenomena due to an inherent scaling invariance in the problem.
The approach we introduce to regain strong convergence (concentration compactness) is to
show that concentration only occurs in a small or negligible set. We follow the notes of L.
C. Evans [7], but we also refer the reader to P. L. Lions |17, [I§]

To illustrate the key points, let us discuss the possibility that a sequence f, — f weakly
in L9(U) fails to converge strongly, i.e., fr — f strongly in L?(U) does not hold. Indeed,
in addition to assuming weak convergence, let us also assume pointwise convergence almost
everywhere, fp — f a.e. in U. This ensures that no wild oscillations may occur, which
itself is another potential culprit responsible for the failure of strong convergence. However,
even this additional assumption does not guarantee strong convergence due to a possible
concentration of mass onto a negligible set. Namely, the obstruction is that the mass | f, — f|?
may somehow coalesce onto a set with zero Lebesgue measure.
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The central example we use to illustrate the concentration compactness principle is the
problem on obtaining extremal functions to the sharp Sobolev inequality. In particular,
we first give a simple characterization of the non-compactness of the Sobolev embedding in
terms of concentration. Then, we use this characterization to recover strong compactness of
a minimizing sequence via translations and dilations to obtain an extremal function to the
sharp Sobolev inequality. For simplicity, we focus only on the special case where H'(R™) <
L2 (=2)(R")  i.e., when p = 2 and ¢ = 2n/(n — 2) in the Sobolev inequality. Sometimes we
denote the borderline Sobolev exponent 2n/(n — 2) by 2*. Prior to stating our main results,
we review some terminology and basic theorems but we omit their proofs.

Theorem 6.1. Let U C R™ be a bounded open subset, 1 < q < oo, and assume fr — f in
LY(U). Then

(a) {fi}32, is bounded in LI(U) and
(0) [ flzew) < iminfe oo || fill Low)-

(c) (Refinement of Part (b)) If1 < q < oo, fr, = fin LY(U) and || f||Lew) = limp—oo || fr |l o),
then
fx — [ strongly in LI(U).

Recall the following special case of the Banach-Alaoglu theorem.

Theorem 6.2. Assume 1 < g < co. If the sequence { fi}72, is bounded in LI(U), then it is

weakly precompact in LI(U). That is, there exists a subsequence {fi;}52; C {fr}ze, and a
function f € LYU) such that f, — f in LI(U).

Remark 6.1. The previous result holds in the case ¢ = oo but the convergence of the
subsequence in L>(U) is understood in the weak star sense, since U C R" is o-finite and
L>°(U) is isometrically isomorphic to the dual space L'(U)*. Namely, we treat sequences in
L>(U) as sequences of bounded linear functionals on L*(U). The weak compactness in the
case ¢ = 1 1s obviously false. To circumvent this issue, the Riesz Representation Theorem
indicates that it is natural to consider L*(U) as a subset of M(U), the space of signed finite
Radon measures on U.

Definition 6.1. A sequence {ux}3>, C M(U) converges weakly to p € M(U), written
as

pe = i M(U),
provided that
/gduk—>/gdu as k — 00
U U

for each g € C.(U).
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Theorem 6.3. Assume p — p weakly in M(U). Then
lim sup i (K) < p(K)

k—o0 o

for each compact set K C U, and
p(V) < liminf (V)
k—o0

for each open set V C U.

Theorem 6.4 (Weak Compactness for Measures). Assume the sequence {py}32, is bounded
in M(U). Then there exists a subsequence {juy;}32, and a measure p in M(U) such that
i, — poin M(U).

Remark 6.2. We extend the terminology above to the Sobolev space WH4(U), 1 < ¢ < oo,
by saying that fr, — f weakly in WH4(U) whenever fi, — f in LY(U) and Dfy — Df in
LY(U;R™).

Theorem 6.5 (Compactness for Measures). Assume the sequence {yuy}p, is bounded in
M(U). Then {u}32, is precompact in W=14(U) for each 1 < g < 1*.

We will need the following refinement of Fatou’s lemma (see Lemma [A.1]) due to Brezis
and Lieb.

Theorem 6.6 (Refined Fatou). Let 1 < ¢ < oo and assume f, — f weakly in LI(U) and
fv — f a.e. inU. Then

1 (1illfaiy = i = ) = Wl

6.2 Concentration and Sobolev Inequalities

Let Cy be the best constant in the Gagliardo-Nirenberg-Sobolev inequality in this case (see
in the appendix). There holds the following.

Theorem 6.7. Assume that n > 3,

fe — f strongly in L (R™), Df, — Df in L*(R™;R").

loc

Suppose further that
IDfil> = pin M(R™), |fel* = v in M(R").

(a) Then there exists an at most countable index set J, distinct points {z;};e; C R", and
non-negative weights {;,v;};es such that

v=[f" 4+ vibe, w =D+ b, (6.1)

jeJ jeJ
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(b) Furthermore,

v <CT il ? (je ). (6.2)

(¢c) If f =0 and
V(Rn>1/2* > Cgu(Rn)1/27

then v is concentrated at a single point.

Proof. Step 1: Assume first that f = 0. Choosing ¢ € C°(R"), from (A.9) we deduce that

1
%

([ Jenian)™ <o [ Dlef)dr)

Since f; — f = 0 strongly in L? (R"), we obtain

loc

L
*

1
( ol dV) T < Cz( |90|2du> : (6.3)
R7 R”
So by approximation, we have
V(B2 < Cop(E)? (6.4)
where 2 C R" is any Borel set. Now since p is a finite measure, the set
D :={x e R"|p({z}) > 0}

is at most countable. Thus, we can write D = {x;},ecs, p; := p({z;}) (j € J) so that
jeJ

From ([6.4) and the theory of symmetric derivatives of Radon measures (see Federer), we
conclude that v < p and so for each Borel set F,

v(E) = /EDul/ du (6.5)
where
D,v(x) := lim vBi(x)) (6.6)
T S0 u(By(x)) '
But implies
v(B,(z)) 2 )2/ (=2)
R < CF (B @), ©.7)

provided that p(B,(x)) # 0. Thus, we infer
D,ywv=0 p—ae on R"\D. (6.8)
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Now define v; := D,v(x;)p;. Then (6.5)-(6.8) imply asserts (a) and (b) of the theorem
(for f=0).
Step 2: Next, assume the hypotheses of assertion (c) in the theorem. Then gives
V(R = Cyu(R™)M2,
Since (|6.3)) ensures that
1 |

2

([ Iolav)™ < Cop®a ([ IpPdu)’,
Rn Rr
we deduce that v = CZ" u(R™)% =2y, Consequently, (6.3)) reads

( 1%
R’ﬂ

and so v(E)Y? y(R™)Y/™ < v(E)'/? for each Borel set E. This cannot happen if v is concen-
trated at more than one point.

1 1
o du)2 < CQU(R")%< |o]? d1/>2,
Rn

Step 3: Now assume f # 0 and write g := fr — f. The calculations in the Steps 1 and 2
apply to {gx}72, as well. Moreover, there holds

|Dgi|> = |Dfe|> —=2Dfi - Df + |Df|* = p— |[Df]> in M(R"),
and Theorem [6.6| implies |gr|?>” — v — | f|*" in M(R"). This completes the proof. and

O
6.3 Minimizers for Critical Sobolev Inequalities
Let n > 3 and consider the problem of minimizing the functional
Iw) = [ |Dw|*dx, (6.9)

R

over the admissible set
M = {w € L* (R") | ||w| 2* @ny = 1, Dw € L*(R™;R"™)}.

Notice carefully that
I := inf I[w] = Cy>.

weM
Our goal is to show that this infimum is indeed obtained by a suitable minimizer. On
a related note, we may also consider the same minimization problem but on an arbitrary

domain U with functional
Iylw] = / | Dw|? dx
U
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undergoing minimization over
My = {w € L* (U) | |w|| 2~y = 1, Dw € L*(U;R™)}.

Interestingly enough, the infimum here is also given by the best constant in the Gagliardo-
Nirenberg-Sobolev inequality, i.e.,

in Iyfw| =1 =C52

but the minimum is not achieved for U # R™. In other words, the best constant in the sharp
Sobolev inequality does not depend on the domain and the culprit responsible for this is the
scaling invariance

u(x) = ug(z) = RY* u(Rz) = R"??u(Rz), R >0,

with respect to the norms in the Sobolev inequality. In particular, if for example, u € H'(R")
with unit norm, then [lugl|zes )y = |lullper @y = 1 but ug — 0 in H'(R") as R — oo.
Therefore, relative compactness of minimizing sequences is not expected to hold. What
ultimately saves us is the actions of rescaling and translations, which can recover the relative
compactness of minimizing sequences.

Remark 6.3. (a) Recall that the method of moving planes indicates that the critical points
of the functional I, which includes its minimizers, are essentially unique. Namely, all
critical points must admit the form

n—2
g 2
. = S — 6.10
tern() = e0) (=) (6.10)
for some € > 0 and some point xy € R™.

(b) The classification of critical points in (a) also illustrates the concentration property which
occurs in the critical Sobolev inequality. Indeed, upon normalizing, there holds

Cllueaollmr@ny = lteaoll 2 @ny = 1
so that the sequence {uc 4, }eso is bounded in these norms. However, as e — 0, we have

that
{ Ue wo () — 0 for x # xy,

Ue 4o () = 1/M7D/2 s 00 for x = 0.

Now we choose a minimizing sequence {uy}3>, C M with

Iuy,] — I. (6.11)

196



We may assume Duy, — Du in L*(R™;R") and u; — w in L?" (R"™). Recall from Chapter 2
that
< Tim _ ‘
Iu] < hlzr_l) g)lf Iuy] 132;4 Iw]

Hence, v is a minimizer as long as u € M. Now, since we have
Jull o gy < 1, (6.12)

what is only left to verify is if |lu| 2gn) = 1. Once we verify this, we are done. Before
we state and prove the main result, for v € M, y € R™ and s > 0, we define the rescaled

function
:L‘ —

v () = s_nT_Qv<

y) (z € RY).

Theorem 6.8. Let {uy}72, C M satisfy (6.11)). Then there exist translations {y;}7>, C R™
and dilations {s}3>, C (0,00) such that the rescaled family {ul***}2, C M is strongly
precompact in L* (R™). In particular there exists a minimizer u € M of the functional I.

S

Sketch of Proof. We outline the proof in five main steps.
Step 1: Define the Lévy concentration functions

yeRn

Qx(t) :== sup / lup|* dz (t>0,k=1,2,3,...).
B (y)

Then QV°(t) = Q¥ (t/s) where Q¥° is the concentration function of u°. The fact that
Jm Q) =1
ensures we can choose dilations {s;}7°; such that
QU*(1)=1/2 forally e R", k=1,2,3,....

Then this allows us to select translations {y;}7°, so that the measures, v*"* = |u

(k=1,2,3...), are tight in M(R").

Yk»Sk |2*
k

Step 2: To simplify notation, we assume the dilations and translations of step one were
unnecessary and so Qx(1) =1/2 (k=1,2,3,...) and the measures {v;}7, are tight. Thus,
passing to a subsequence, if necessary, we may assume

v, = v in M(R"), v@R")=1. (6.13)

We may also assume that

pr — pin M(R") (6.14)
for py := |Dugl? (k=1,2,3,...).
Step 3: We claim that u Z 0.
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Assume the contrary. By noting that p(R") — I, u(R") < I = Cy?, and (6.13)), we
use part (c) of Theorem to get that v is concentrated at a single point o € R". From
this we deduce the contradiction

1

Lo > / g2 d — 1.
2 Bi(x0)

Step 4: We claim that u € M.
Assume otherwise, i.e., assume that |[ul|?,- @y = A€ (0,1). Setting
My = {w € L* (R") | ||w| 2+ @ny = A, Dw € L*(R*;R™)},

we write

I .= inf [|w]|.

ri= b Tl
Then I, = A\/?"[.
Step 5: According to (a) and (b) of Theorem [6.7, we have

v=lu 4> vide, = Dul’+ ) o,
jed jeJ
for some countable set of points {x;},c; and positive weights {y;, v;},e,, satisfying
MDY y=1, >0 (e ).
jed

Hence, we arrive at the contradiction

I > p(R") 2/ |Duf* dz+ >
Rn

jed
> 1, + Z“j > ()\2/2* " Zyj/z*>1
j€J jeJ
> 1,
and this completes the proof. O

Remark 6.4. Roughly speaking, Steps 3 to 5 in the proof show that vanishing and dichotomy
in the principle of concentration compactness do not occur and therefore, compactness must
hold (see Proposition . Step 5, in particular, shows that if a portion of the mass con-
centrates, our minimization problem splits into two parts, the sum of whose energies strictly
exceeds the energy were splitting not to occur.
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APPENDIX A

Basic Inequalities, Embeddings and Convergence Theorems

This appendix covers some basic inequalities, embeddings and convergence results that we
frequently apply throughout.

A.1 Basic Inequalities

Theorem A.1 (Cauchy’s inequality). There holds for a,b € R,

a’> b
b< — 4+ —.
ab < 2+2

More generally, we have Cauchy’s inequality with €:

b?
ab§6a2+4— (a,b >0, €>0).
€

Theorem A.2 (Young’s inequality). Let 1 < p,q < oo and 1/p+1/q=1. Then

a? b
ab < — + —.
p q

Theorem A.3 (Jensen’s inequality). Assume f:R™ — R is convez, i.e.,

flra+ (1 —7)y) <7f(z)+ (1 —=7)f(y)

forall z,y € R™, and U C R" is bounded and open. Let u: U — R™ be summable. Then

f(|—é|/Uudx) < ﬁ/Uf(u)dx.
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Theorem A.4 (Holder’s inequality). Assume 1 < p,q < oo and 1/p+1/q=1. Ifu € LP(U),
ve LIYU), then

/U|uv| dz < [[ull o 12l oo, (A1)

Proof. Let uw € LP(U) and v € LY(U). From the homogeneity of the LP norms, we can
assume that ||u||rr) = ||v||Le(ry = 1. Then by Young’s inequality of Theorem [A.2]

1 1 1 1
/uvdm < —/ uP dx + —/ vide = —+ - =1=|[ul|r@n ||V o)
U pJu q9Ju p g

An easy extension of this inequality is the following whose proof we omit.

Theorem A.5 (General Holder’s Inequality). Let 1 < py,pa, ..., pp < 00 with > ;" pik =1,
and assume uy € LPx(U) for k=1,...,m. Then

/ s | d < T Nl v )- (A.2)
U k=1

Theorem A.6 (L? interpolation). Assume that 1 <p <r <q < oo and

1 6 (1-6
Lo, 06
r.op q
Suppose also that u € LP(U) N LY(U). Then u € L"(U) and
lullr @y < el Zoqn 1ull o (A.3)
Proof. Since 9’“ + 4= ) = 1, Holder’s inequality yields

a=0)r

or 1
/|u| dx—/ P[] 0 e < (/ | ) (/ | O dx)
U

Theorem A.7 (Gronwall’s inequality). Letn(-) be a non-negative absolutely continuous (i.e.,
differentiable a.e.) function on [0,T], which satisfies for a.e. t, the differential inequality

' (t) < o(t)n(t) + (1), (A.4)

where ¢(t) and 1(t) are non-negative, summable functions on [0,T]. Then

]

t
n(t) < elo#s)ds (77(0) + / (s) ds) forall 0 <t <T. (A.5)
0
In particular, if n(0) = 0 and
1 (t) < ¢n on [0,T],
then
n=0 on [0,7T].
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Proof. From (A.4]),

d

s (n(s)e i 018) = =I5 (3 (5) — o(s)(s)) < € B4 (s) forae. 0<s < T,

Integrating this we get, for each 0 <t < T,

n(t)e o o0 < (o) + /t e o ?dry(s) ds < n(0) + /t¢(8) ds.
0

0

Sometimes, it is more convenient to use the integral form of Gronwall’s inequality.

Theorem A.8. Let (t) be a non-negative, summable function on [0,T]| which satisfies, for
a.e. t the integral inequality

t
&) < Cl/ £(s)ds + C2, (A.6)
0
for some constants Cy,Cy > 0. Then
£(t) < Oy(1 + Cyte™) forae. 0 <t <T.

In particular, if

(1) SCl/Otﬁ(s)ds for a.e. 0<t<T,

then
£=0onl0,T].

Proof. Set n(t) = fot &(s)ds so that n/(t) < Cin(t) + Cy for a.e. ¢ in [0,T]. According to the
differential version of Gronwall’s inequality, we obtain

1(t) < € (n(0) + Cat) = Cote™,
The result then follows from ({A.6) since

&(t) < Cin(t) + Cy < Co(1 + Cyte™).
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A.2 Sobolev Inequalities

Next, we introduce and prove the Gagliardo-Nirenberg—Sobolev inequality and Morrey’s
inequality. For each estimate, we establish its corresponding Sobolev embedding theorems.

Theorem A.9 (Gagliardo-Nirenberg-Sobolev). Assume 1 < p < n and denote p* := np/(n—
p). There exists a constant C = C(n,p) such that

[ull 1o+ ey < C(, )| Dul Lo ny (A7)
for all uw € CL(R™).

Remark A.1. Note that the functions u must have compact support to discriminate from
obvious cases such as constant functions. However, it is interesting that the constant C' does
not depend on the size of the support of u.

Proof. Step 1: We first prove the estimate for p = 1.

Since u has compact support, for each : = 1,2,...,n and x € R" we have

Zs
U(IE):/ Uxi(%,--w%—l;?/z‘,xiﬂ,-~,In)dyi;

—0o0

and so fort=1,2,...,n,

lu(z)| S/ |Du(zy, . s Yiy o )| dy;.

—00

Therefore,

1
o

|u<x>\n"1sH(/ \Du(xl,...,yz-,...,mrdyz-) |
=1 -

Integrating this inequality with respect to x; yields

00 N co M [e's] ﬁ
/ |u|n—1dx1§/ H(/ |Du|dy,~) dxy
—00 —00 ;1 —00
(%) ﬁ co M (%) ﬁ
([ 1oaan)™ [TIL( [ 10uldn) ™ ae,
00 ﬁ n -
(/ |Du|dy1> (
- =2

IN

=2
/ / | Du| day dyi> : (A.8)

where we used the general Holder’s inequality in the last inequality. Now integrate (A.8))
with respect to ws:

/ / w71 day dy < </ / | Du| dxy de) / H "1 dxy,
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where o .
h:/ | Dul dy, Ii:/ / |Du|dxy dy; (i =3,4,...,n).

Applying the general Holder’s inequality once more to this yields

1 1
00 00 " oo oo n—1 0 oo n—1
/ / |u| =T dxy dzy < (/ / | Du| day dx2> (/ / | Du| dy, da:2>
1

H (/ / / | Du| dxy dxo dyi) "
i—3 —o00 J —o0 J —o0

We continue integrating with respect to x3, x4, ..., x,, until we arrive at

R i=1 \Y 7% -
= (/ | Dul| dx) L (A.9)

Hence, this proves the theorem for p = 1.
Step 2: Consider the case where p € (1,n). If we apply estimate (A.9) to v := |u]” (v >1
is to be determined below), we obtain

( |u|71 das) ' < |Dv| dx = fy/ lu|"| Dul d
Rr Rr Rr

Sy(/ |u](7_1)pfldx> ' (/ |Du\pdx)p. (A.10)

Set |
sz(n— )
n—p
so that
n—1 p—1 n—p '

Thus, (A.10) becomes

1
3

bS]

1
( i dx) <C ( | Dul? dx) ’
Rr Rr

and this completes the proof. ]

Theorem A.10 (Morrey’s inequality). Assume n < p < co. Then there exists a constant
C(n,p) such that

[l coa—n/prny < C(n, p)l[ullwrrn (A.11)
for all uw € C'(R™).
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Proof. Step 1: We claim there exists a constant C' = C'(n) dependlng only on n such that

- |Du(y)|
Jldy < C d A12
|Br<x>| /B,.(x) u(v) Dldy < / |y — 2| 1 Yy ( )

for each open ball B, (z) C R™.

To show this, fix any point w € 0B(0). Then, if 0 < s <,
*d

/o %u(x +tw) dt| =

u(z + sw) — ulx)| = /0 Du(z + tw) - wdt

< / \Du(z + tw)| dt.
0
Hence,

/ lu(z + sw) — u(x)| ds, < / / | Du(x + tw)| ds,, dt. (A.13)
2B, (0) o JoBi(0)

We estimate the right-hand side of this inequality to get

S S D
/ / |Du(z + tw)| ds,, dt = / / | “_(31/” ds, dt
0 JOB1(0) 0 JIBt(x) tn

D D
_ / | U(y)_ll dy g/ | U(y)_!1 .
B |z —y|" B [T —y|"

where y = x 4+ tw and t = |z — y|. The left-hand side can be written
1

/ lu(z + sw) — u(x)| ds, = — / lu(z) — u(x)|ds.,,
9B1(0) $"" JoB, ()

where z = = + sw. Combining the preceding two calculations in (A.13]), we obtain the

estimate D
[ -l o=t [P,
9B, (z) Bo(x) 1T —y|"

Integrate this with respect to s from 0 to r yields

" D
[ =< [Py
B (x

n JB.(z) "1: -y

This proves our first claim.
Step 2: Fix z € R". Applying estimate (A.12)) then Holder’s inequality, we get

1 1
|u ()"\Bl( s )|U(-7«") ()\dy+|B<>’ le)‘ u(y)| dy
| Du(y)| )
= C/r( ) |y — zfn1 Ay + Cllelzr oo

p—1

) p=t
g 1 !
<c([ warar) ([ s )+ Clule)
Rn Bi(z) |z — Y p=1

S CHUHWI,p(Rn).
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The last estimate holds since p > n implies (n — 1) 7 < n, so that

1
/ e dy<oo
) o —y|""

As x € R" is arbitrary, there holds

sup |u(z)] < Cllulwirm@n)-
z€R™

Step 3: Next, choose any two points z,y € R" and set r := |z —y|. Let W := B,.(z) N B,(y).
Then

1
ute) )] < 7 [ o) = o) s+ i [ jule) =)tz = 1

Furthermore, estimate ({A.12)) allows us to estimate
L = lu(z) —u(z)|dz < ( lu(z) — u(z)] dz)
(W] / |Br ()] /5, ()
p—1

SC(/ |Du|pdz)p / dzl 3
(@) @) |z — 2|V

p—1

<C< n—(n— 1) 1) P ”DUHLP(RTL)

S CT’l_E ||Du||Lp(Rn)

Similarly, we calculate

1 _n
b= i [ Ju) = u(2)|ds < Cr' 5 D ager
W]

Hence,
lu(z) —u(y)| < Cr' 7 || Dullo@ny = Cla = y['~# || Dul| ony,
therefore,
|u(z) — u(y)|
[u] or-n = sup —————73— < Ol Dul|to@n).
ORI TS

A.2.1 Extension and Trace Operators

Although we use the Gagliardo-Nirenberg-Sobolev and Morrey inequalities to prove the
classical Sobolev embedding theorems, we shall also make use of the following basic results.
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Theorem A.11 (Extension Theorem). Assume U is bounded and OU is C*'. Select a bounded
open set V' such that U CC V. Then there exists a bounded linear operator

E: WY (U) — WP(R")
such that for each u € WHP(U) there hold
(a) Eu=u a.e. inU,
(b) Eu has support within V,
(¢) [[Eullwremny < Cllullwremn

with the positive constant C' = C(p,U, V') depending only on p, U and V. Here Eu is called
an extension of u to R™.

Theorem A.12 (Trace Theorem). Assume U is bounded and OU is C'. Then there exists
a bounded linear operator
T: W (U) — LP(0U)

such that

(a) Tu=ulov if ue W(U)NC(0),

(b) HTUHLI’(aU) < CHUHWLP(U) for each u € WLP(U)

with the positive constant C' = C(p,U) depending only on p and U.

Remark A.2. The trace operator T enables us to assign boundary values along OU to func-
tions in WYP(U). This is especially useful for studying the Dirichlet problem and character-
izing the space WyP(U), the closure of C°(U) in WYP(U), as the WP functions vanishing
at the boundary. For example, if U is bounded and OU is C*, and uw € WHP(U), then (see
[8][Theorem 2 on page 273])

we WyP(U) if and only if Tu =0 on OU.

The next property concerns the global approximation of functions in W1?(U') by smooth
functions.

Theorem A.13 (Density Theorem). Assume that U is bounded and suppose that u €
Whr(U) for some 1 < p < oo.

(a) There exists functions u,, € C®(U) N W' (U) such that

Uy —> u in WHP(U).

(b) If, in addition, OU is C*, then statement (a) holds but the approximating sequence of

functions can be taken to be smooth up to the boundary, i.e., u,, € C(U).
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A.2.2 Sobolev Embeddings and Poincaré Inequalities

The first embedding theorem follows from the Gagliardo-Nirenberg-Sobolev inequality.

Theorem A.14 (Sobolev embedding 1). Let U be a bounded open subset of R and suppose
oU is C*. Assume 1 <p<n andu € WY (U). Then u € LP (U) with the estimate

[ull o 0y < Cn,p, U)[ullwrowy,
where the constant C'= C(n,p,U) depends only on n,p, and U.

Proof. Since OU is C*, the extension theorem of Theorem implies that there exists an
extension Fu = u € W1P(R") such that 4 = u in U, @ has compact support, and

@llwre@ny < Cllullwr@)- (A.14)

Since u € WP(R") has compact support, the Density theorem or Theorem implies
that there exists a sequence of functions u,, € C°(R") (m = 1,2,...) such that

Uy, — U in WHP(R™). (A.15)
From the Gagliardo-Nirenberg-Sobolev inequality, we obtain
[ — il o ey < Cl| D — D] Lo g

for all [, m > 1. Hence,
Uy — @ in L7 (R"). (A.16)

Moreover, the Gagliardo-Nirenberg—Sobolev inequality also implies

||um||LP*(R") < C”DumHLP(R”)a

Therefore, (A.15) and (A.16) imply

[l o @y < Cll D] o en),
This inequality and (A.14]) complete the proof. O

Theorem A.15 (Sobolev embedding 2). Assume U is a bounded open subset of R™. Suppose
u € Wy (U) for some 1 < p < n. Then we have the estimate

1wl ey < C(n,p,q, U)||Dul| oy

for each q € [1,p*], where the constant C = C(n,p,q,U) depends only on n,p,q, and U. In
particular, for all 1 < p < o0,

ull ey < C(n,p,q,U)||Dul o). (A.17)
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Remark A.3. Estimate (A.17) is sometimes called Poincaré’s inequality. Consequently,
this inequality implies the norm || Dul| sy is equivalent to ||ullwie@y in Wy (U) provided
U is bounded.

Proof of Theorem[A 15, Since u € W,*(U), there exist functions u,, € C®(U) (m =
1,2,...) converging to u in WP(U). We extend each function u,, to be 0 on R"\U (we
do not need to invoke the extension theorem) and apply the Gagliardo-Nirenberg—Sobolev
inequality to obtain

HUHLP*(U) < CHDUHLP(U)-

Since u(U) < oo, basic interpolation theory says the identity map, I : LF" (U) — L4(U), is
bounded provided 1 < g < p*, i.e., |[ul|Low) < Cllul| oy if 1 < g < p. O

Definition A.1. We say u* is a version of a given function u if u = u* a.e.
The next embedding theorem is a result of Morrey’s inequality.

Theorem A.16 (Sobolev embedding 3). Let U be a bounded open subset of R™ and suppose
its boundary OU is C'. Assume n < p < oo and uw € W'P(U). Then u has a version
u* € C¥(U), for v =1— 1%, with the estimate

[u*{| oy < Cn,p, U)l[ullwrsw).
The constant C = C(n,p,U) depends only on n,p and U.

Proof. We only consider the case n < p < oo since the case p = 0o is easy to prove directly.
Since U is C, the extension theorem implies that there is an extension Fu = u € WHP(R")
such that « = v in U, u has compact support, and

|l wrr@ny < Cllullwiewy- (A.18)

Since u has compact support, Theorem implies there exist functions u,, € C*(R")
such that
U, — U in WHP(R™). (A.19)

According to Morrey’s inequality, |[u, — w|corv@n) < Cllty — wl|wirmn) where v =1 — -
for all I,m > 1. Hence, there exists a function u* € C%7(R™) such that

U, — u* in C*7(R™). (A.20)

Owing to (A.19) and (A.20]), we see that u = u* a.e. in U, so u* is a version of u. Morrey’s
inequality also implies ||t ||cor@n) < C|tm||wrp@ny. Thus, (A.19) and (A.20)) imply

[u*|lcon@ny < Clltllwregn).

This inequality and (A.18) complete the proof of the theorem. H
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The previous Sobolev inequalities for W!P(U) can be further generalized to the Sobolev

spaces W*P(U) for k € N.

Theorem A.17 (General Sobolev inequalities). Let U be a bounded open subset of R™ with
a C' boundary OU. Assume u € W*P(U).

(i) If k <%, then u € LY(U) where

1 1 &k np
— =g
qg p n

We have, in addition, the estimate

:n—kp'

HUHLG(U) < C(k7 n, D, U) HUHWLP(U)'
The constant C = C(k,n,p,U) depends only on k,n,p, and U.
(i) If k> %, then u € CH LI (@), where
= [;] —i—l—;, z'f; s not an integer
any positive number < 1,1f % 1S an integer.

We have, in addition, the estimate
“uHCk*[%]*L“/(U) < C(ka 0,7, U)HUHW’“P(U)?
the constant C = C(k,n,p,~,U) depending only on k,n,p,~, and U.

Proof. The proof is standard, similar to the aforementioned special cases above, and we refer
the reader to Evans [§] for more details. O

Remark A.4 (Case p = n). In the endpoint borderline case for p € [1,n), p* = np/(n —
p) — +oo by sending p — n which suggests that Wr™(U) C L>*(U). Unfortunately,
this only holds when n = 1 and fails for n > 2. For example, if we take n > 2 and

U = B1(0) C R, then the function loglog (1 + ﬁ) belongs to WH™(U) but not to L>(U).
However, BMO(U), the space of functions with bounded mean oscillation, is the proper
embedding space to replace L>®°(U) in order to preserve the embedding of the Sobolev space

(see Corollary[A.1]).

The next theorem is on the compact embedding of Sobolev spaces into Lebesgue spaces.

Theorem A.18 (Rellich-Kondrachov compactness). Assume U is a bounded open subset of
R” with C* boundary OU. Suppose 1 < p < n, then

wte(U) cc LYU)

for each 1 < q < p*.
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Proof. 1. Fix 1 < ¢ < p* and note that since U is bounded, Theoremimplies wWiP(U) C
LY(U) and |Ju||Le@wy < Cllul|lwrr@y- Thus, it remains to show that if {u,}5_; is a bounded
sequence in WP (U ), there exists a subsequence {u,,; }32, which converges in LI(U).
2. By the Extension theorem, we may assume, without loss of generality, that U = R™ and
the functions {u,,}>°_; all have compact support in some bounded open set V' C R". We
also may assume

Slnlzp ||| 1m0y < 00. (A.21)

3. We first examine the smoothed functions
U, =Mk Uy, (€>0,m=1,2,3,...),

where 7. denotes the standard mollifier. We may assume that the functions {uf, }o_, all
have support in V' as well.
4. We claim that

Uy, — Uy, in LY(V) as € — 0 uniformly in m. (A.22)

To prove this, we note that if w,, is smooth, then

) = une) = [ X (555 (o) = e

en €

N /B o) () (um (@ = €y) — um(x)) dy

= [ 10 [ Gytnte —ctm) ey

= —6/ n(y)/ Duy(z — ety) -y dt dy.
B (0) 0

/|u ) — Up (2 )|da:<e/ //]Dumx—etyﬂdxdtdy
/\Dum )| dz.

By approximation, this estimate holds if u,, € W1?(V). Since V is bounded, we obtain

Therefore,

[, = tml[ L1 vy < €llDum L1 vy < €CllDum | oy,
By virtue of (A.21)), we have
ut, — u,, in L*(V) uniformly in m. (A.23)
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Then since 1 < g < p*, the L? interpolation inequality yields
45 = wmllzaey < gy = wall s vy 1as = wanll ¥ )5

where % = 9+% and 6 € (0,1). As a consequence of (|A.21)) and the Gagliardo—Nirenberg—
Sobolev inequality, we obtain

et = tmllzaqvy < Cllugy, — il 1.

Hence, (A.22) follows from (A.21)).

5. Next, we claim that for each ¢ > 0, the sequence {u,,}>°_; is uniformly bounded and
equicontinuous.
Indeed, if x € R™, then

(o)l < [ = )y < o ol < O < o
Be(z
for m =1,2,.... Similarly,

| Dy, ()] < / " 1 Dne(e = )| |um ()] dy < N Diel o=y || 11y < Ce™ D < o0,
Be(x

for m = 1,2,.... Thus, the claim follows from these two estimates.

6. Now fix § > 0. We show that there exists a subsequence {u,;}32; C {um o, such that

lim ||Umj - umkHLq(V) S 0. (A24)

j,k—00
To see this, we employ ({A.22)) to select € > 0 suitably small such that
|y, = U Loy < 0/2 (A.25)

form=1,2,....

Now observe that since the functions {u,,}>°_;, and thus the functions {uf, }°°_,, have
support in some fixed bounded set V' C R", we can apply the claim in 5. and the Arzela—
Ascoli compactness theorem to extract a subsequence {uy, }32, C {uf, };7_; which converges
uniformly on V. Therefore,

lim sup [Juy,, — ug,, L) = 0.
J,k—00

But then this combined with (A.25]) imply

Hm sup [[t; — tm, || Laqry < 6.
j,k—00

This proves (A.24)).
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7. By applying assertion (A.24) with 6 = 1,1/2,1/3,... and use a standard diagonal argu-
ment to extract a subsequence {uy,; }32; C {uny }p—; satisfying

lim sup [[tm, — Uy ||Lavy = 0.
l,k—o0

This completes the proof of the theorem. n
Remark A.5. Since p* > p and p* — oo as p — n, we have
WP (U) cc LP(U)
for all 1 < p < oo. In addition, note that
Wer(U) cc LA(U),
even if we do not assume OU is C'.

The Rellich-Kondrachov compactness theorem allows us to establish the following Poincaré
type inequalities. We omit their proofs but refer the readers to Evans [8] for more details.

Theorem A.19 (Poincaré’s inequality). Let U be a bounded, connected, and open subset of
R™ with C* boundary OU. Assume 1 < p < co. Then there exists a constant C = C(n,p,U)
depending only on n,p, and U, such that

lu = (W llzrwy < Cln, p, U)||Dull o @)
1
for each function uw € WP(U) where (u)y := |_U|/ udy.
U

Theorem A.20 (Poincaré’s inequality on balls). Assume 1 < p < co. Then there exists a
constant C' = C(n,p) depending only on n and p such that

|u — (W)ep|lr(B,. ) < C(n,p) - 7| DullLr(s, @)
1
1B, ()| By (z)

for each ball B,(z) C R™ and each functionu € W'P(B,.(x)) where (u),, := udy.

A simple application is the embedding of W'*(R") into BMO(R").
Corollary A.1. Let n > 1 and suppose u € WH™(R") N L'(R™). Then u € BMO(R").
Proof. From Theorem with p = 1 and Holder’s inequality, we get

1), “]dy_Cr ‘/ | Du| dy

1/n

1
<Cr Dul|™ dy
<rBr<:c>| )

= C< /Br(:c) ’Du‘n dy) 1/
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Hence, we deduce that

z€ER™ r>0

1
lullparome = sup —/ = (w)ar] dy < C ()|l .
= 1B.(2)] /5. (=)

A.3 Convergence Theorems

Let (X, A, pt) be a fixed measure space.

Theorem A.21 (Lebesgue’s Montone Convergence). Let {f,} be a monotone increasing
sequence of non-negative measurable functions that converges pointwise to a function f(x),
1.€.,

(a) 0 < fi(z) < folz) < ... < fu(x) < ... < 00 for every x € X (monotone increasing),

(b) and

lim f,(x) = f(x) for every x € X (pointwise convergence).
n—oo

Then f is measurable and

/fndu—>/fdu as m —» 0.
D' X

Lemma A.1 (Fatou’s). If f, : X — [0, 00] is measurable, for each positive integer n, then

/ <lim inf fn) dp < lim inf/ frndp.
X n—oo n—oo X

The next is a consequence of Fatou’s lemma which we often use. For instance, it implies
that strong solutions of elliptic equations on a bounded domain satisfy the equation pointwise
almost everywhere in the domain.

Corollary A.2. Suppose that f is a non-negative measurable function. Then f = 0 p-almost
everywhere in X if and only if

/ Fdu=0. (A.26)

Proof. If (A.26) holds, let
E, = {x eX ‘ flz) > 1/n},

so that f > (1/n)xg,, from which
1
0= [ fduz (B 20
x n
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Thus, u(E,) = 0 and so the set

freX|f@) >0t =B,

has measure zero by the countable additive property of measures.
Conversely, assume f = 0 p-almost everywhere. If

E={reX|f(x) >0},

then obviously u(E) = 0. Then set f, = nyg so that f < liminf f,,. Thus, by Fatou’s
lemma,

OS/fd,ugliminf/ fndp=0.
X X
Hence, || f||z1(») = 0, and this completes the proof. O

We can invoke the previous corollary to replace pointwise convergence with p-almost
everywhere convergence in Theorem [A.2T|but the limit function is assumed to be measurable
a priori.

Corollary A.3. Let {f,} be a monotone increasing sequence of non-negative measurable
functions that converges p-almost everywhere in X to a non-negative measurable function

f(z). Then
dp = i L d.
/Xf I nggo/xf Iz

Proof. Choose N € A be such that pu(N) = 0 and {f,} converges to f at every point of
M = X\N. Then {f,xa} converges to fxu in X. Thus Theorem implies that

/ Frardp = lim / s d

Since pu(N) = 0, the functions fyy and f,xn vanish p-almost everywhere. It follows from

Corollary that
/ fxndp=0 and / faxn dp = 0.
X X

Since f = fxu + fxn and f, = fuxm + faxn, it follows that

/fduz/foduz 1im/fandu= lim/fndu-
X X n—oo [ n—oo [y
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Theorem A.22 (Lebesgue’s Dominated Convergence). Suppose {f,} is a sequence of mea-
surable functions on X such that

f(l’) = lim fn(x)
exists for every x € X. If there is a function g € L'(u) such that
ful)| < @) forn=123. zeX

then f € L*(p),

iy [ 1 Jlda =0

n—oo X
and

lim fndu = / fdu.
An immediate application of Theorem is the following

Corollary A.4. Ift — f(x,t) is continuous on |a,b] for each x € X, and if there erists
g € LY(p) such that |f(x,t)| < g(z) for x € X, then the function F defined by

NO=Aﬂ%WM@ (A.27)

is continuous for each t in [a,b].

Another basic application of Theorem indicates when we may differentiate F' and
when it is equivalent to passing derivatives onto the integrand f. Hereafter, an integrable
function f on X means f is a measurable function on X belonging to L'(u).

Corollary A.5. Suppose that for some to in |a,b], the function x — f(x,to) is integrable
on X, that Of /Ot exists on X X [a,b], and that there exists an integrable function g on X
such that

‘g—{(fc,t)) < g().
Then the function F as defined in (A.27) is differentiable on [a,b] and

%(t):%/)(f(x,t)d,u(x) ZAZ—{(myt)dﬂ(m)~

Proof. Let t be any point of [a,b]. If {t,} is a sequence in [a, b] converging to t with t,, # t,

then 3
—f(x,t): lim f<x7tn)_f($at)7
ot n—00 t, —1

Therefore, the function x — (9f/0t)(x,t) is measurable.

r e X.
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If z € X and ¢ € [a, b], by the mean-value theorem, there exists s; between tq and ¢ such

that
of

f(.l’,t) - f('r7t0) = (t - tO)E('% 51)'

Therefore,
[f (@, )] < [f(z,t0)] + |t —tolg(2),

which implies that the function © — f(z,t) is integrable for each ¢ in [a, b]. Hence, if t,, # ¢,

then
F(tn) _F<t> f(xatn> _f<x’t)
t—1 :/X Lo )

Since this integrand is dominated by ¢g(z), we may apply Theorem to conclude the
desired result.

O

We can use Theorem to establish a similar convergence result in the Lebesgue spaces
LP(p) with 1 < p < o0.

Theorem A.23. Let 1 < p < oo and suppose {fn} is a sequence in LP(u) which converges
p-almost everywhere to a measurable function f. If there exists a g € LP(u) such that

[fu(@)| < g(x), € X, neN,
then f belongs to LP(u) and {f,} converges in L to f.

Proof. Assume 1 < p < oo since the case p = 1 is exactly Theorem [A.22] Obviously, the
following two properties hold for p-almost everywhere,

fale) = F@)P < 2g(@)P, and T |fulw) = f@) =0

and there holds [2¢]P and thus ¢? belongs to L'(u). Hence, from Theorem [A.22, we get

lim/|fn—f|pd,u:0,
n—oo [y

and this completes the proof of the theorem.
O

Remark A.6. Lebesgue’s dominated convergence theorem and its extension provide sufficient
conditions that guarantee when pointwise convergence of a sequence of measurable functions
implies strong convergence in the LP norm topology; namely, if the sequence of functions can
be compared to an LP function, then pointwise convergence implies LP convergence. Con-
versely, LP convergence does not generally imply pointwise convergence. We give an example
below llustrating this.

216



Let X = [0, 1], the sigma algebra A are the Borel sets, and p is the Lebesgue measure.
Consider the ordered list of intervals

[07 1]7 [O’ %]’ [%’ 1]’ [07 %L [%7 %]7 [%7 1]7 [07 i]? [zlp %]7 [%7 %]7 [%7 1]’ [07 %]v [%v %]7 ...; let f, be the
characteristic function of the n!* interval on this list, and let f be identically zero. If
n>m(m+1)/2=1424...4+m, then f, is a characteristic function of an interval I whose
measure is at most 1/m. Hence,

I = Vg = [ 1fa= 0 dn= [ 1P [ o= 1) < 1/,

and this shows {f,} converges in L? to f = 0.

On the other hand, if = is any point of [0, 1], then the sequence of numbers { f,,(z)} has a
subsequence consisting only of 1’s and another subsequence consisting of 0’s. Therefore, the
sequence { f,} does not converge at any point of [0,1]! (although we may select a particular
subsequence of { f,} which does converge to f).
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